ESP8266
Technical Reference

Version 1.3
Copyright © 2017

About This Guide

This document provides introduction to the interfaces integrated on ESP8266. Functional
overview, parameter configuration, function description, application demos and other
information is included.

The document is structured as below.

Chapter Title
Chapter 1 Overview
Chapter2 GPIO
SPI Compatibility Mode
Chapter 3 User Guide
SPI Communication User
Chapter 4 Guide
SPI Overlap & Display
Chapter 5 Application Guide
SPI Wi-Fi Passthrough 1-
Chapter 6 Interrupt Mode
SPI Wi-Fi Passthrough 2-
Chapter 7 Interrupt Mode
HSPI Host Multi-device
Chapter 8 AP
Chapter 9 12C User Guide
Chapter 10 12S Module Description
Chapter 11 UART Introduction
Chapter 12 PWM Interface
IR Remote Control User
Chapter 13 Guide
Chapter 14 Sniffer Introduction
Appendix Appendix
Release Notes
Date Version
2016.05 V1.0

Subject
Overall introduction to the interfaces.

Description of GPIO functions, registers and parameter
configuration.

Description of functions, DEMO solution, ESP8266 software
instruction and STM32 software solution.

Description of SPI functions, master/slave protocol format and API
functions.

Description of SPI functions, hardware connection of SPI overlap
mode, API description and display screen console program demo.

Description of SPI functions, SPI slave protocol format, slave status
and line breakage and API functions.

Description of SPI functions, SPI slave protocol format, data flow
control line and API functions.

Description of HSPI functions, hardware connection and API
functions.

Description of 12C functions, master interface and demo.

Description of 12S functions, system configuration and API
functions.

Description of UART functions, hardware resources, parameter
configuration, interrupt configuration, example of interrupt handler
process and abandon serial output during booting.

Description of PWM functions PWM, detailed on pwm.h, and
custom channels.

Introduction on infrared transmission, parameter configuration and
functions of sample codes.

Introduction on Sniffer, application scenarios, phone App and I0T-
device firmware.

GPIO registers, SPI registers, UART registers, Timer registers.

Release notes

First release.

2016.06 V1.1 Added Section 4.5 Interface Description.

2016.08 V1.2 Updated Section 14.1 Sniffer Introduction.

2017.05 V1.3 Updated Section 4.1.2 SPI Features.

Table of Contents

LI @ V=T VT PR 1
1.1. General Purpose Input/Output Interface (GPIO)ccooevriiiiiiiiiiie s 1
1.2. Secure Digital Input/Output Interface (SDIO) ... 1
1.3. Serial Peripheral Interface (SPI/HSPI)ue ettt 1

1.3.1. General SPI (MaSLEI/SIAVE)......ccuueieeiee ittt e e e e e e e eneeeeeeean 2

R T2 o 1] I = = S 2
R S 2 @ 101 1= o = o PSRRI 2
R TR 2 T [| 1= - Lo = SRR 3
1.6. Universal Asynchronous Receiver Transmitter (UART)ooiiiiiiiiiiieee e 3
1.7. Pulse-Width Modulation (PWM) ... ccesereee e e e ee e e e e e e s s e e e e e e e e e s s nsnnsnseeneeeeeeeees 4
R TR 1 B 1= 0 o (= @) 1 (o SR 4
R TR 7o T 3 = S 5

2 €1 {0 6
2.1, FUNCHONAI OVEIVIEW.....eiiiiiiiiiiiieiii sttt e e e e e e e e e e s s e e s e s st e e ner e et e eaeaaaaeseesesanannnnnns 6
2.2, Instruction 0N GPIO REQGISTENSoeiiiiiiiiiii ettt e e e 7

2.2.1. GPIO Function Selection REQISTer........cociuiiiiiiiiiieeee e 7
2.2.2. GPIO OUIPUL REGISTEISeeiiiiieieiiiee ettt e e e e e e e e e e enneeeeeees 7
2.2.3. GPIO INPUE REGISTEeeiiieieiieee ettt e e s e e e e e e nee e e e e e nees 8
2.2.4. GPIO Interrupt REGISTEIS ...coiiiiiiieei ettt e e e e e e 8
2.2.5. GPIOT16 Related APIS ...ttt e e e e as 9
2.3. Parameter ONfiQUIatioN.........ueuieeeiiiiiie e ————— 9
2.3.1. Parameter Configuration for SCeNe 1coo oo 9
2.3.2. Parameter Configuration fOr SCENE 2cooo i 10
2.3.3. Parameter Configuration for SCene 3cooo i 11
2.3.4. Interrupt Function Processing ProCcedures...........cccuereiiniiiiiieie e 12
2.3.5. Example of The Interrupt Function Processing Procedures............cooeiiiiiiinineeeenn. 12

3. SPI Compatibility Mode USer GUIAEcceeviiiiiiiiiiiiiieeeeeeeee e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesseseaesnene 13
3.1, FUNCHONAI OVEIVIEW. ...ttt ettt et e e e e e e e e e e e e s nr e e e e e e e anreeeeaeeanas 13
T2 B 1 =1V, (@ ST o] 0] 1o o ISP 13

R 2020 I [o oY [1o 1] o PP PRPRPTFPPR 13
3.2.2. ESP8266 Software Compiling and Downloadingcccceeeceeeeeeeiiiiieeeeseesieeeee e 13

3.2.3. ESP8266 FLASH Software Downloadingcc.coccceeereeiriiiieiee e eceeeee e 14

3.2.4. ESP8266 FLASH Software DowNIOadingcceeeeeiiiiiiiiin et 14

3.3. ESPB8266 Software INStrUCTIONccoeeeeeeeeee e e e e 15
3.3.1. Protocol Principle: SDIO Line Breakage and SDIO Status Register..........ccccoeenneene.. 15

3.3.2. Instructions on The Read/Write Buffer and The Registration Linked List................... 16

3.3.3. API Functions in The ESP8266 DEMOccoiiiiiiiiiiieaeeiiiee et eeeee e e e 17

3.4. STM32 SOftware INSTIUCTIONeiiiiiiieiie e e e e e e eneeeeeas 18
3.4.1. IMportant fUNCHIONS.......cooiieeeeee e e e e e e e e e eaeeeees 18

4. SPI Communication USEr GUIE.......c.iiiiiiiiiiieee ettt e e e e e e e e e nnnee e e e e e e s 21
O O =Y o 1 OSSR 21
S I U g o o) o = I Y= oV o 21

e 2 e I Y LU= SR 21

4.2. ESP8266 SPI Master ProtoCol FOrMAL........ccooiiiiiiiiee et 21
4.2.1. Communication Format Supported by Master SPI ..., 21

4.2.2. Master SPI Communication Format Supported by Current API.........cccccooiiiiiinnnnns 22

4.3. ESP8266 SPI Slave Protocol FOrMatcoiiiiiiiiiiii ettt 22
4.3.1. SPI Slave Clock Polarity Configuration Requirement............coooeciviviiniiinieieeeeeeeee e, 22

4.3.2. Communication Format Supported by Slave SPl.........ccccoveiiiiiiiiiiiereeeeeeen 22

4.3.3. Command Definition Supported by Slave SPI............ 22

4.3.4. Slave SPI Communication Format Supported by Current APcccooiieiiieiiiniinnnnn. 23

4.4. API Function Description of SPI MOQUIE..........ccceiiiiiiieeiiee et 23
4.41. API Function Description of Master SPI ... 23

4.4.2. Master SPI API FuNction DeSCHIPLIONcoiiiiiiiiiiiieee e 25

4.5, SPlINterface DESCHPLIONcoiiii i e e e e e e e e s anee e e e e e e enreeeeas 27
451, Data STUCTUIE ...t et e e s e e e e e neeeeeas 27

4.5.2. APIDESCHPHON ... e e 30
4.5.3. SPI_TESE DEIMO ...eeiiiiiiiiiiie ettt e e e e e s et e e e e s mbn e e e e e e e annreeeeaas 35

5. SPI Overlap & Display AppliCation GUIAEceeeiiiiiiiiiiieiieeeee e 46
5.1, FUNCHONAI OVEIVIEW........eeiiiieieiieie ettt e e e et e e e e e et e e e e e e e s eeeeeeeaanseeeaeeeaanseneeeeeanas 46
5.2. Hardware Connection of SPI Overlap MOE.......cccoooeiiiieiieieee e a7
5.3. API Description of SPI Overlap MOGE..........oooiii it a7
5.4. Display Screen Console Program DEMO..........uuiiiiiiiiiiiiee et e e eneeee e 48
L0 R @7 o o= Yo 4 o) o I B 1= T=Tor] o) 1] o IR 48

5.4.2. APl FUNCLION DESCIIPLION ...ccoiie ettt e e s 48

5.4.3. Pre-compiled Macro Setting........cooieieiiiiiiiiiree e 50

6. SPI Wi-Fi Passthrough 1-Interrupt MoOdecoooi i 51

B.1. FUNCHIONAI OVEIVIEW....ceuieeieeeeee ettt ettt e et e et s et e s et eate s e sassate s e s s sansesasesasransennsesnsernnsenn 51

6.2. ESP8266 SPI Slave ProtoCol FOrmMat ...t e e e e e e e e 51
6.2.1. SPI Slave Clock Polarity Configurationccccoeeiiiiiiii e 51

6.2.2. Communication Format Supported by The SPI Slave.........cccccceieeeeiieeeeeeeie e 51

6.3. Slave Status Definition and Line Breakageccouuoiouiiiiiiiiiiiee e eeee e 52
6.3.1. Status DEefiNitioNceeiiiiiiiieiec e a e e e e e 52

6.3.2. GPIOO LiNE BreaKagecccccicuieiiiiiiiiiiiieee e e e s e e s e e e e e e e e e e e e e e s e e s e sa e nnnnnnne 52

6.4. ESPB8266 SPI Slave APl FUNCHIONS.......uuiiiiiiieieieeeee e e e e e e e e e e e e e e e e s s e e neseneeee s 52
7. SPI Wi-Fi Passthrough 2-Interrupt MOde ... 58
4% T ¥ g Vo 1 o g = T @ =TV T 58
7.2. ESP8266 SPI Slave Protocol FOrmMatcooooiiiiieiee e ee e e e e e e e 58
7.2.1. SPI Slave Clock Polarity Configurationccccoeeiioiiiiii e 58

7.2.2. Communication Format Supported by The SPI Slave.........cccccoviiiiiiiiiiiiiiieeeeeee 58

7.3. Instruction on The Data FIow Control LiN€.......ccceeeiiviiic i e 59
7.3.1. GPIO0 MOSI BUffer STatusccooei et e e e e e e e e e 59

7.3.2. GPIO2 Master Receives The Slave Send Buffer Statuscceeeeveieiiiiiiiiicccciccciiinns 59

7.3.3. Master Communication Logic Implementation..........cccccceeeieiiiiii e 59

7.4. ESP8266 SPI Slave APl FUNCLIONS........iiiieiiiiec et e e e e e e e e e e eeeeeeenns 61
8. HSPI HOSt MUIRI=AEVICE AP ... et e e e e e e e e e e e e e e e 64
< T I 1 g T To T b= B @YY 1 SR 64
8.2. Hardware CONNECHIONcccii it e e e s s e e e e e e e e e e aaaeaeeeesesnssnnnnnnnnnns 64
£S JRC TR AN = I 1Yo o) 1 o RSNt 65
LS TR P2 @ U £=T= Y T [67
9.1, FUNCHIONAI OVEIVIEW......cceiiiieecee e e e e e e e e e e e e e et e e e et e s e e e eeaaaaaeeeeeeeseensnnnnaannnen 67
1O T oL O o P= T (=Y gl Vg (=Y = Lo TS 67
9.2.1. INItIANIZATION ceeeeeee e ——————— 67

S 2 -1 A 2 O S RE 67

S 2 TR (o o TN 2 S 68

9.2.4. 12C Master ReSPONAS ACKooiii ettt e et e et e e et e e e e e e e enseneeeeeeaes 68

9.2.5. 12C Master Responds NACK ...t e e e e e e e e e e e e e e e e e as 68

9.2.6. Check I12C Slave RESPONSEccoeee ettt ettt e e e e e e e e e e e e e e eeeesennnnas 69

9.2.7. Write Data 0N 120 BUS ...t e e e s e 69

9.2.8. Read Data from [2C BUScoceeiiiieieccce ettt e e e e e e 69

£ TR TR 10 =Y o o o 69

10.12S Module DeSCHIPLIONcooieeeeeeeeeeeee e e 71

10.1. FUNCLIONAI OVEIVIEBW...... i iie ettt e ettt e e e e e e e e e e e e e e et e ee e e n s aaeseeaaaeaeeeeernnnnns 71
10.2. System ConfiQUIation...........cooii it e s nnn e 71
10.2.1. 12S Module Configuration 71
10.2.2. Link List Configuration............eeiiiii et e e e 74
10.2.3. SLC Module Configurationc..eceeiiiiiiiei i e e e e e 75

OIS TN = I 0T o o] o T 10T o o)] o 0SS 75
T0.3.1. VOId FUNCHION ...ttt ettt eaaan 76
10.3.2. CONF FUNCHION ...ttt e e et e e e s e e e e e e s ennees 76
10.3.3. START FUNCHION ...ttt e e e e e e s e nne e 77
TT.UART INTrOAUCTION ... e e e e e e e e e e e e e e e eeeees 78
B S O g o i) =L Y= VT 78
11.2. HardWare RESOUITES.ottt ettt e e e e et e e e e e e e e e e e et e e et e e aaaaeaeeeesa e nnnsnnnnneeeeeees 79
11.3. Parameter Configuration oo e e e e e e e enneeeeeeas 79
11.3.1. The Baud Rate ... e e e 79

B T2 o= 1) Y = 1 SRR SPPRN 80
T1.3.83. Data Bit ... e eaeeas 80
11,304, SEOP Bil ..t e e e e e e e e e ean 80

B G TS [0 1Y7= T {1 o TP PP RPPPROPRRPPRRTN 80
11.3.6. Switch Output Port of Print FUNCHON........coiiiii e 81
11.3.7. Read The Remaining Number of Bytes in tx / rx QUEUE..........cceveeeiiiiiei i 81
11.3.8. Loopback Operation (I00P-back)..........couuiiiiiiiiiiiiiee e 81
11.3.9. LiNe SOP SIGNQL.....eeiiiiiiiieiee ettt e e e e e e e e e e e e e e neeeas 81

B R T O 8 o T T 1 o SRR 81
11.3.11.0ther INTErfaCES ... e 82

B I S @ o i 10 T (=N [0 £ U] o 82
B T Vg (= U o A =T < (Y PP 82

B I 2 Vg | (=Y o = Lo = S P 83

L R G TR [(=Y (] o 1Y/ o TSR 83

11.5. Example of Interrupt Handler ProCESSuuiiiiiiiiiiiiiii ettt 87
11.6. Abandon Serial Output DUriNg BOOLINGc.ueeiieiiiiieiee e 87
L2 VA L B [(=T = o PP 89
12,1, FUNCHONAI OVEIVIEW...coii ettt ettt e e s et e e e e st e e e e e s aane e e e e s e eanreeeeas 89
L2 I T = (0 PRSP SRR 89

12.1.2. IMPIemMENTAtiON ... e e e 89

12.1.3. CONFIQUIALION .. e e e e e e e e e e e e e e e e e aeaas 90

12.1.4. Parameter SpecifiCationcooo oo 90

12.2. Details 0N PWIMLN et e e e e e e e e e e e e e e e nnn e s e e eeeeeas 90
B2 TS = 14] o] (Y 70T L= S 90

12.2.2. Interface SPeCifiCationScoiiiiiiiiiii e 91

12.3. CUSEOM ChaNNEIS.ottt et e e e e sttt e e e e e e snre e e e e e e anneeeeeeeeaannes 93
13.IR Remote Control USEr GUIAE...........uueueeeiiieie s 95
13.1. Introduction to Infrared TranSMISSIONeeiiiiiiiiiiieiii e 95

B 20 0 T =T] 01 1 T PP PP 95

LRI 2 1Yo YAV o o [T ORPPPTPRT 95

18.2. Parameters Configurationcoooi it e e e e e e e e e snneeeeeeeana 96
18.3. Functions of Infrared Sample COEScoui i e e 97
14.SNIffer INTrOAUCTION ... e e e e e e e e e e e e e e e e e e s 98
B IS T o1 3 1=l [o o [[1 o T o 98
ST o111 (=Y o] o [Tez= i o) g IR Yot =Y o F- 14 o 1= 101
B TR o T g T Y P PPPRRPFPP 103
B S (@ 0 Pt o LoV 1= [0 Y= = Y 103

2 o) 0 1= o T | 104

1. Overview

Y

Overview

1.1. General Purpose Input/Output Interface (GPIO)

ESP8266EX has 17 GPIO pins which can be assigned to various functions by programming
the appropriate registers.

Each GPIO can be configured with internal pull-up or pull-down, or set to high impedance,
and when configured as an input, the data are stored in software registers; the input can
also be set to edge-trigger or level trigger CPU interrupts. In short, the 10 pads are bi-
directional, non-inverting and tristate, which includes input and output buffer with tristate
control inputs.

These pins can be multiplexed with other functions such as 12C, 12S, UART, PWM, IR
Remote Control, etc.

For low power operations, the GPIOs can also be set to hold their state. For instance, when
the chip is powered down, all output enable signals can be set to hold low.

Optional hold functionality can be built into the IO if requested. When the 10 is not driven by
the internal or external circuitry, the hold functionality can be used to hold the state to the
last used state. The hold functionality introduces some positive feedback into the pad.
Hence, the external driver that drives the pad must be stronger than the positive feedback.
The required drive strength is small — in the range of 5pA to pull apart the latch.

1.2. Secure Digital Input/Output Interface (SDIO)

ESP8266EX has one Slave SDIO, the definitions of which are described below. 4-bit 25
MHz SDIO v1.1 and 4-bit 50 MHz SDIO v2.0 are supported.

Table 1-1: Pin Definitions of SDIOs

Pin Name Pin Num 10 Function Name
SDIO_CLK 21 106 SDIO_CLK
SDIO_DATAO 22 107 SDIO_DATAO
SDIO_DATA1 23 108 SDIO_DATA1
SDIO_DATA 2 18 109 SDIO_DATA 2
SDIO_DATA_3 19 1010 SDIO_DATA_3
SDIO_CMD 20 1011 SDIO_CMD

1.3. Serial Peripheral Interface (SPI/HSPI)
ESP8266EX has 3 SPls.

One general Slave/Master SPI

Espressif 1/104 2017.05

@ 1. Overview

One Slave SDIO/SPI
One general Slave/Master HSPI

Functions of all these pins can be implemented via hardware. The pin definitions are
described as below.

1.3.1. General SPI (Master/Slave)

Table 1-2. Pin Definitions of SPIs

Pin Name Pin Num 10 Function Name
SDIO_CLK 21 106 SPICLK
SDIO_DATAO 22 107 SPIQ/MISO
SDIO_DATA1 23 108 SPID/MOSI
SDIO_DATA 2 18 109 SPIHD
SDIO_DATA_3 19 1010 SPIWP
UOTXD 26 101 SPICS1
GPIOO 15 100 SPICS2
LLl Note:

SPI mode can be implemented via software programming. The clock frequency is 80 MHz at maximum.

1.3.2. HSPI (Slave)

Table 1-3. Pin Definitions of HSPI (Slave)

Pin Name Pin Num 10 Function Name
MTMS 9 1014 HSPICLK
MTDI 10 1012 HSPIQ/MISO
MTCK 12 1013 HSPID/MOSI
MTDO 13 1015 HPSICS

1.4. 12C Interface

ESP8266EX has one 12C used to connect with micro-controller and other peripheral
equipments such as sensors. The pin definition of 12C is as below.

Table 1-4. Pin Definitions of 12C
Pin Name Pin Num 10 Function Name
MTMS 9 1014 12C_SCL
GPIO2 14 102 12C_SDA

Espressif 2/104 2017.05

@ 1. Overview

Both 12C Master and 12C Slave are supported. 12C interface functionality can be realized via
software programming, the clock frequency reaches 100 kHz at a maximum. It should be
noted that 12C clock frequency should be higher than the slowest clock frequency of the
slave device.

1.5. 12S Interface

ESP8266EX has one I12S data input interface and one 12S data output interface. 12S
interfaces are mainly used in applications such as data collection, processing, and
transmission of audio data, as well as the input and output of serial data. For example, LED
lights (WS2812 series) are supported. The pin definition of 12S is as below. 12S functionality
can be enabled via software programming by using multiplexed GPIOs, and linked list DMA

is supported.
Table 1-5. Pin Definitions of 12S
12S Data Input
Pin Name Pin Num 10 Function Name
MTDI 10 1012 [2SI_DATA
MTCK 12 1013 12SI_BCK
MTMS 9 1014 [2SI_WS
MTDO 13 1015 12SO_BCK
UORXD 25 103 2SO_DATA
GPIO2 14 102 12SO_WS

1.6. Universal Asynchronous Receiver Transmitter (UART)

ESP8266EX has two UART interfaces UARTO and UART, the definitions are as below.

Table 1-6. Pin Definitions of UART

Pin Type Pin Name Pin Num 10 Function Name

UORXD 25 103 UORXD
UOTXD 26 101 UOTXD

UARTO
MTDO 13 1015 UORTS
MTCK 12 1013 UOCTS
GPIO2 14 102 U1TXD

UARTA
SD_D1 23 108 U1RXD

Data transfers to/from UART interfaces can be implemented via hardware. The data
transmission speed via UART interfaces reaches 115200 x 40 (4.5 Mbps).

UARTO can be used for communication. It supports fluid control. Since UART1 features
only data transmit signal (Tx), it is usually used for printing log.

Espressif 3/104 2017.05

@ 1. Overview

Ll Note:

By default, UARTO outputs some printed information when the device is powered on and booting up. The
baud rate of the printed information is relevant to the frequency of the external crystal oscillator. If the
frequency of the crystal oscillator is 40 MHz, then the baud rate for printing is 115200; if the frequency of the
crystal oscillator is 26 MHz, then the baud rate for printing is 74880. If the printed information exerts any
influence on the functionality of the device, it is suggested to block the printing during the power-on period by
changing (UOTXD,UORXD) to (MTDO,MTCK).

1.7. Pulse-Width Modulation (PWM)

ESP8266EX has four PWM output interfaces. They can be extended by users themselves.
The pin definitions of the PWM interfaces are defined as below.

Table 1-7. Pin Definitions of PWM

Pin Name Pin Num 10 Function Name
MTDI 10 1012 PWMO
MTDO 13 1015 PWM1
MTMS 9 1014 PWM2
GPIO4 16 104 PWM3

The functionality of PWM interfaces can be implemented via software programming. For
example, in the LED smart light demo, the function of PWM is realized by interruption of the
timer, the minimum resolution reaches as much as 44 ns. PWM frequency range is
adjustable from 1000 ps to 10000 s, i.e., between 100Hz and 1 kHz. When the PWM
frequency is 1 kHz, the duty ratio will be 1/22727, and over 14 bit resolution will be
achieved at 1 kHz refresh rate.

1.8. IR Remote Control

One Infrared remote control interface is defined as below.

Table 1-8. Pin Definitions of IR Remote Control

Pin Name Pin Num 10 Function Name
MTMS 9 014 IR Tx
GPIO5 24 105 IR Rx

The functionality of Infrared remote control interface can be implemented via software
programming. NEC coding, modulation, and demodulation are used by this interface. The
frequency of modulated carrier signal is 38 kHz, while the duty ratio of the square wave is
1/3. The transmission range is around 1m which is determined by two factors: one is the
maximum value of rated current, the other is internal current-limiting resistance value in the
infrared receiver. The larger the resistance value, the lower the current, so is the power, and
vice versa. The transmission angle is between 15° and 30° which is determined by the
radiation direction of the infrared receiver.

Espressif 4/104 2017.05

1. Overview

1.9. Sniffer

ESP8266 can enter promiscuous mode (sniffer). ESP8266 can capture complete IEEE
802.11 packets in the air or it can obtain the length of the packets.

Espressif 5/104 2017.05

2. GPIO

GPIO

N &

2.1. Functional Overview

The ESP8266 has 16 general I0s. Their pin numbers and names are shown in the table

below:
Table 2-1. GPIO Pin Definition
GPIO NO. Pin NO. Pin name
GPIOO pin15 GPIO0_U
GPIO1 pin26 UOTXD_U
GPIO2 pin14 GPIO2_U
GPIOS3 pin25 UORXD_U
GPIO4 pin16 GPIO4_U
GPIO5 pin24 GPIO5_U
GPIO6 pin21 SD_CLK_ U
GPIO7 pin22 SD_DATAO_U
GPIO8 pin23 SD_DATA1_U
GPIO9 pin18 SD_DATA2_U
GPIO10 pin19 SD_DATA3_U
GPIO11 pin20 SD_CMD_U
GPIO12 pin10 MTDI_U
GPIO13 pini12 MTCK_U
GPIO14 pin9 MTMS_U
GPIO15 pin13 MTDO_U

In the QUAD mode flash, 6 10 interfaces are used for flash communication.

In the DUAL mode flash, 4 |0 interfaces are used for flash communication.

Ll Note:

Users may find the following documents helpful:
e Appendix 1 - GPIO Registers

o [List of ESP8266 pin functions: ESP8266_Pin_List.xIsx:
http://bbs.espressif. com/viewtopic. phn2f=21&t=412&pn=1545#p1545 ,

Espressif 6/104 2017.05

2.2.
2.2.1.

2. GPIO

Instruction on GPIO Registers

GPIO Function Selection Register

The ESP8266 MTDI is used to demonstrate the GPIO function selection.

Function selection register PERIPHS _I0 MUX_MTDI U (this register differs for different
GPIOs)

PIN_FUNC_SELECT(PERIPHS_ IO MUX_MTDI_U,FUNC_GPI012):

FUNC_GPI012=3.
Configurations differ for different pins.

During the configuration, refer to ESP8266_Pin_List.xIsx. On the Digital Die Pin List page,
users can see the general GPIO and their multiple functions. On the Reg page, users can
find registers related to GPIO function selection.

On the Digital Die Pin List page, users can find the function configuration in the FUNCTION
column.

! Notice:

If you want to configure it to be FUNCTION X, write X -1 into the bit in the register. For example, if you want
to configure it to be FUNCTION 3, write 2 into the bit in the register.

2.2.2. GPIO Output Registers

Espressif

e Output enable register: GPIO_ENABLE_W1TS
bit[15:0] the output enable bit (readable and writable):

If the related bit is set to be 1, the IO output is enabled. Bit[15:0] contains 16 GPIO output
enable bits.

e Output disable register: GPIO_ENABLE_W1TC
bit[15:0] the output disable bit (readable and writable):

If the related bit is set to be 1, the IO output is disabled. Bit[15:0] contains 16 GPIO output
disable bits.

¢ OQutput enable status register: GPIO_ENABLE
bit[15:0] the output enable status bit (readable and writable):
Value of bit[15:0] of this register shows the related pin output enable status.

By writing data into bit[15:0] of GPIO_ENABLE_WA1TS and bit[15:0] of
GPIO_ENABLE_WA1TC, users can control bit[15:0] of GPIO_ENABLE. For example, when
bit[0] of GPIO_ENABLE_W1T is set to be 1, then bit[0] of GPIO_ENABLE =1; when bit[1] of
GPIO_ENABLE_WA1TC is set to be 1, then bit[1] of GPIO_ENABLE = 0.

e Output low level register GPIO_OUT_W1TC

bit[15:0] output low level bit (write only register):

7/104 2017.05

@ 2. GPIO

If the related bit is set to be 1, the 1O output is low level (at the same time, users should
enable the output). Bit[15:0] contains 16 GPIO output statuses.

LLl Note:
If users need to set the pin to high level, they need to configure the GPIO_OUT_W1T register.

e Output high level register GPIO_OUT_WI1TS
bit[15:0] output high level bit (write only register):

If the related bit is set to be 1, it means the IO output is high level (at the same time, users
should enable the output). Bit[15:0] contains 16 GPIO output statuses.

LLI Note:
If users need to set the pin to low level, they need to configure the GPIO_OUT_W1TC register.

e Output status register GPIO_OUT
bit[15:0] output status bit (read/write register):
Value of bit[15:0] of this register shows the related pin output status.

Bit[15:0] of GPIO_OUT is decided by bit[15:0] of GPIO_OUT_W1TS and bit[15:0] of
GPIO_OUT_WATC. For example, when bit[1] of GPIO_OUT_WA1TS =1, then GPIO_OUTI[1]
=1; when bit[2] of GPIO_OUT_W1TC = 1, then GPIO_OUT[2]=0.

2.2.3. GPIO Input Register

bit[15:0] the input status bit (readable and writable):
If the related bit is set to be 1, the 1O pin status is high level. If the related bit is set to be O,
the 10 pin status is low level. Bit[15:0] contains 16 GPIO input status bits.

LLI Note:
The GPIO input detection function is enabled by default.

2.2.4. GPIO Interrupt Registers
* Interrupt type register GPIO_PIN12 (this register differs for different GPIOs)
bit[9:7] (readable and writable):
0: the GPIO interrupt is disabled
1: rising edge triggered interrupt
2: falling edge triggered interrupt
3: double-edge triggered interrupt
4: low level

5: high level

Espressif 8/104 2017.05

@ 2. GPIO

¢ Interrupt status register GPIO_STATUS

Bit[15:0] (readable and writable):

If the related bit is set to be 1, the 1O interrupts. Bit[15:0] contains 16 GPIOs.
¢ Interrupt clearing register GPIO_STATUS_W1TC

Bit[15:0] (readable and writable):

Write 1 into the related bit, the related GPIO interrupt status will be cleared.

2.2.5. GPIO16 Related APIs

Different from other 10 interfaces, GPIO16(XPD_DCDC) belongs to the RTC module instead

of the general GPIO module. It can be used to wake up the chip during deep-sleep; it can
be configured to input or output mode; but it cannot trigger the 10 interrupt. the APIs are
shown below.

e gpiol6 output conf(void)
Set the GPIO16 to the output mode.
e gpiol6 _output_set(uint8 value)
Output high/low level from GPIO16. Configure GPIO16 to the output mode first.
e gpiol6_input_conf(void)
Set the GPIO16 to the input mode.
e gpiol6_input_get(void)
Read the GPIO16 input level status. Configure GPIO16 to the input mode first.

2.3. Parameter onfiguration

Three scenes are given as examples for parameter configuration:

e Configure the MTDI output high level, and enable the pull up.
e Configure the MTDI to the input mode, and get its level status.

e Configure the MTDI to falling edge triggers interrupt.

2.3.1. Parameter Configuration for Scene 1

1. Configure the MTDI to GPIO mode.

PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDI_U,FUNC_GPIO12);

This sentence writes 1 into bits 4-5 of PERIPHS_IO_MUX_MTDI_U register. When bits 4-5
of PERIPHS_IO_MUX_MTDI_U are set to be 1, the MTDI is configured to the GPIO mode.
For details of PERIPHS_IO_MUX_MTDI_U register, refer to Section 2.2, Instruction on
GPIO Register.

2. Configure the MTDI output high level.

GPIO_OUTPUT_SET(GPIO_ID PIN(12), 1);

Espressif 9/104 2017.05

@ 2. GPIO

This sentence has two functions:

e Write 1 into bit 12 of GPIO_ENABLE_W1TS register. It enables the MTDI output
function.

* Write 1 into bit 12 of GPIO_OUT_WH1TS register. It sets MTDI output to high level.

LLI Note:

To set MITDI output to low level, set the second parameter of this function to be 0.

GPIO_OUTPUT SET(GPIO_ID_PIN(12), 0);

This sentence has two functions:

e Write 1 into bit 12 of GPIO_ENABLE_W1TS register. It enables the MTDI output
function.

e Write 1 into bit 12 of GPIO_OUT_W1TC register. It sets MTDI output to low level.
3. Enable the MTDI pull up.

PIN_PULLUP_EN(PERIPHS I0_MUX_MTDI U);

It writes 1 into bit 7 of PERIPHS_IO_MUX_MTDI_U. It enables the MTDI pull up.

LLI Note:
To disable the MTDI pull up, use the following sentence:

PIN_PULLUP_DIS(PERIPHS_IO MUX_MTDI_U);

2.3.2. Parameter Configuration for Scene 2

1. Configure the MTDI to GPIO mode.

PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDI_U,FUNC_GPIO12);

This sentence writes 1 into bits 4-5 of PERIPHS_IO_MUX_MTDI_U register. When bits 4-5
of PERIPHS_IO_MUX_MTDI_U are set to be 1, the MTDI is configured to the GPIO mode.

2. Configure the MTDI to the input mode.

GPIO_DIS_OUTPUT(GPIO_ID_PIN(12));
3. Get the MTDI pin level status.

Uint8 level=0;

level=GPIO_INPUT_GET(GPIO _ID PIN(12));

GPIO_INPUT_GET(GPIO_ID_PIN(12)) gets the status of bit 12 of GPIO_IN register. The
value of this register shows the input level of related pin. (Enable the input function of the
related pin first to get effective register status)

Espressif 10/104 2017.05

D)

LI Note:
e [f MTDI is at high level, then the return value of GPIO_INPUT_GET is 1, level = 1;

e [fMTDI is at low level, then the return value of GPIO_INPUT_GET is O, level = O.

2.3.3. Parameter Configuration for Scene 3

2. GPIO

typedef enum {

v A W N RO

GPIO_PIN_INTR_DISABLE
GPIO_PIN_INTR_POSEDGE =
GPIO_PIN_INTR_NEGEDGE =
GPIO_PIN_INTR_ANYEGDE =
GPIO_PIN_INTR_LOLEVEL =
GPIO_PIN_INTR_HILEVEL =
} GPIO_INT_TYPE;

This structure is used to configure the GPIO interrupt trigger manner. It is declared in
gpio.h.

1. Configure the MTDI to GPIO mode.

PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDI_U,FUNC_GPIO12);

This sentence writes 1 into bits 4-5 of PERIPHS_IO_MUX_MTDI_U register. When bits 4-5
of PERIPHS_IO_MUX_MTDI_U are set to be 1, the MTDI is configured to the GPIO mode.

2. Configure the MTDI to the input mode.

GPIO_DIS_OUTPUT(GPIO_ID_PIN(12));

3. Disable all 1O interrupts.

ETS_GPIO_INTR_DISABLE();

4. Set the interrupt handler function.

ETS_GPIO _INTR_ATTACH(GPIO_INTERRUPT,NULL);

5. Configure MTDI to falling edge triggers interrupt.

gpio_pin_intr_state set(GPIO ID PIN(12),GPIO _PIN INTR_NEGEDGE);

Espressif

This sentence writes 0x02 into bit[9:7] of GPIO_PIN12 register. It sets MTDI to falling
triggers interrupt.

LLI Note:
If users want to disable the MTDI interrupt function, write Ox02 into bit[9:7] of GPIO_PIN12 register.

For other interrupt triggering mode configuration, refer to 2.2 Instruction on GPIO Registers.

6. Enable the GPIO interrupt.

11/104

edge

2017.05

@ 2. GPIO

ETS_GPIO_INTR_ENABLE();

2.3.4. Interrupt Function Processing Procedures

1. Clear the interrupt.

Uintlée gpio_status=0;
gpio_status = GPIO_REG_READ(GPIO_STATUS_ADDRESS);
GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, gpio_status);

For instructions on GPIO_STATUS and GPIO_STATUS_WA1TGC, refer to Section 2.2
Instruction on GPIO Registers.

2. check which 10 triggered the interrupt (when multiple 10s are configured to be in
interrupt mode)

If(gpio_status==GPI0_Pin_12)

3. If it is double-edge triggered interrupt, check whether this interrupt is triggered by
rising or falling edge.

if (!GPIO_INPUT_GET(GPIO _ID _PIN(12))) //if this MTDI interrupt is
triggered by falling edge.

2.3.5. Example of The Interrupt Function Processing Procedures

void gpio_intr_handler()
{

uint32 gpio_status = GPIO_REG_READ(GPIO_STATUS_ADDRESS);//read interrupt status
uintd level=0;
GPIO_REG_WRITE{GPIO_STATUS_W1TC_ADDRESS, apio_status);//clear interrupt mask

if(gpio_status & (BIT(12))){ /fjudge whether intervupt source is gpio12
if(GPIO_INPUT_GET(12)){ ¢/ if goio 12 is high leve!

relsed /7 if gpio 12 is low level!

b

else{

¥

Espressif 12/104 2017.05

3. SPI Compatibility Mode User Guide

3. SPI Compatibility Mode User
Guide

g

3.1. Functional Overview

This protocol uses the SDIO mode of the ESP8266 to communicate with other processor's
SPI hosts. The electrical interface is connected through signal line No.4, including the
SCLK, MOSI, MISO and interrupt signal No.1 in the SPI protocol (note: no CS signal).

Downloading the ESP8266 SDIO can be different from downloading other programs. When
the ESP8266 starts, the system reads the pin shared by the SPI interface and the SDIO
interface by default. Therefore, the SDIO module communication protocol should be used.
The ESP8266 should start in the SDIO mode, and then, the host will start the chip in the
ESP8266 RAM through the SDIO downloaded programs. The majority of the programs that
directly use CPU CACHE to call FLASH can be burnt to the FLASH chip connected to the
HSPI interface beforehand.

Data received or sent by the ESP8266 SDIO is processed directly by the DMA module that
supports linked list index.

The ESP8266 can receive and send the SDIO packets efficiently without using the CPU. It
does so through the address of the memory map linked list.

3.2. DEMO Solution

3.2.1. Introduction

The host is the Red Dragon demo board with STM32F103ZET6 as its core.The software is
the FreeRTOS system developed by the IAR platform. The slave is the ESP_IOT reference
board, which is based on the v0.9.3 SDK development.

3.2.2. ESP8266 Software Compiling and Downloading

¢ In the SDIO communication demo \esp_iot_sdk_v0.9.3_sdio_demo\ap, use the
compiler to compile and generate the bin documents for downloading in order to
complete the ESP8266 DEMO work.

¢ ibmain.a in SDIO communication demo \esp_iot_sdk_v0.9.3_sdio_demo\ib is
different from the version released in v0.9.3. When you use the released version of
the SDK, use libmain.a in the DEMO to replace the original one. The new libmain.a
will start the chip, and exchange the SPI module that reads FLASH and the HSPI
mapping pin. Then, you can use DEMO to compile and generate.

* Copy eagle.app.v6.iromOtext.bin in SDIO communication demo
\esp_iot_sdk_v0.9.3_sdio_demo\bin to SDIO communication demoboard

Espressif 13/104 2017.05

3. SPI Compatibility Mode User Guide

\XTCOM_UTIL. eagle.app.v6.iromOtext.bin is all the functions of FLASH chip read
directly through the SPI by CPU CACHE in the ESP8266 program.

e Run BinToArray.exe in SDIO communication demo\. Transfer
eagle.app.vé.flash.bin in SDIO communication demo
\esp_iot_sdk_v0.9.3_sdio_demo\ bin to ANSI C format array. The new array will be
saved in D:\. The target route of BinToArray.exe must be D:\. If there is not a D:\, you
can (1) use a virtual machine with a D:\; (2) connect the device to a U disk named D:\;
or (3) search online for a tool that can transfer bin to array.

e Ifthere is a D:\, name hexarray.c in D:\ as eagle_fw.h, and define the array name as
const unsigned char eagle_fw[] =....... Replace eagle_fw.h in SDIO communication
demo\STM32\ Eagle_Wifi_Driver\ egl_drv_simulation\ (you can copy the array
name and document name in the old eagle_fw.h, rename the hexarray.c and use it
to replace the old eagle_fw.h.). Before starting the chip, write eagle.app.v6.flash.bin
into the ESP8266 memory. eagle.app.v6.flash.bin should be transferred to array,
and be written into the ESP8266 through STM32.

¢ Use the IAR platform to open EgIWB.ewp.eww in SDIO communication
demo\STM32VIAR\ to compile the programs.

3.2.3. ESP8266 FLASH Software Downloading

1. Use the serial line to connect the ESP_IOT reference board and the computer, and
connect them with a 5V power supply. Connect J67 to the 2 pins on the right (enable
the FLASH chip in the HSPI interface), and J66 to the 2 pins on the left (disable the
FLASH chip in the SPI interface). Set MTDO, GPIO0 and GPIO2 to the UART mode 0,
0,1 (up, up, down).

2. Double-click XTCOM_UTIL.exe in SDIO communication demo\XTCOM_UTIL. Click
Tools -> Config Device, and choose Com interface. Baud Rate: 115200. Click Open,
and you will see open Success. Click Connect, and push the H Flash board power,
you will see the connection is completed.

3. Click API TEST(A)->(5) HSpiFlash Image Download, and choose

eagle.app.v6.iromOtext.bin in SDIO communication demo\XTCOM_UTIL. Offset:
0x40000. Click Download, and the downloading will be completed.

3.2.4. ESP8266 FLASH Software Downloading

Espressif

Use the pin header to connect the ESP_IOT reference board and the Red Dragon demo
board. The details are shown below:

In the Red Dragon demo board JP1:
JB62 pin headers in the ESP_IOT reference board (bottom-up)

GND -> 1 VSS/GND
SPI_CLK -> 4 SDIO_CLK
14/104 2017.05

3. SPI Compatibility Mode User Guide

SPI_MOSI -> 5 SDIO_CMD
SPI_MISO -> 3 SDIO_DATO
IRQ -> 2 SDIO_DATH

The ESP_IOT reference board: change the jumper MTDO to 1 (short the 2 pins below),
GPIO0, GPIO2 random (1, x, x is the SDIO starting mode), CHIP_PD:ON (flip the switch
downward). Keep jumper J66 connected to the 2 pins on the left, and jumper J67
connected to the 2 pins on the right.

Connect the 5V power adapter to the ESP_IOT reference board and the Red Dragon demo
board. Turn on the demoboard power, download the compiled programs mentioned in
Section 2.2 to STM32 in the IAR environment. Start the STM32 program, and turn on the
ESP_IOT reference board power. the STM32 will write the starting program into the
ESP8266, and after several seconds, it will automatically run the SDIO to return to the
testing program.

3.3. ESP8266 Software Instruction

3.3.1.

Protocol Principle: SDIO Line Breakage and SDIO Status Register

In the SDIO SPI compatibility mode, pin SD_DATA1 of the ESP8266 is used as the interrupt
line to send signals to the SPI host, and the signals are active low. When the ESP8266
SDIO status register is upgraded by software, the interrupt line will change from active high
to active low. The host should write in data to resume the active high through SDIO. (to be
specific, the host should write 1 into register with the address 0x30 through CMD53 or
CMD52 command in order to resume the active high of the interrupt line.)

the SDIO status register is 32 bits, it is revised by ESP8266 software, and it can be read by
the host through CMD53 or CMD52 command. The address is 0x20-0x23. The data
structure is shown as below:

struct sdio_slave_status_element
{

u32 wr_busy:1;

u32 rd_empty :1;

u32 comm_cnt :3;

u32 intr_no :3;

u32 rx_length:16;

u32 res:8;

Y

Espressif

To be specific:

e wr_busy, bit O: 1, write buffer of the slave is full, and the ESP8266 is processing data
from the host; O, write buffer is empty, users can write data into the buffer.

15/104 2017.05

3.3.2.

Espressif

3. SPI Compatibility Mode User Guide

e rd_empty, bit 1: 1, read buffer of the slave is empty, no data has been updated; O,
there is new data in the buffer for the host to read.

e comm_cnt, bit 2-4: count the read/write communication. Each time the ESP8266
SDIO module finishes an effective packet-reading/packet-writing, the count will
increase by 1. Therefore, the host can judge whether a read/write communication has

been effectively responded by the ESP8266.
e intr_no, bit 5-7: the protocol does not use this variable; reserved.
e rx_length, bit 8-23: actual length of the packets prepared in the read buffer.
e res, bit 24-31: reserved.
The communication procedures of the host are shown as below:

e upon receiving the interrupt request, the host reads the SDIO status register, and
then clears the interuption, and reads/writes the packets according to the status
register;

e it checks the SDIO status register regularly, and reads/writes the packets according
to the status register.

Instructions on The Read/Write Buffer and The Registration Linked List

DMA will directly send packets received and sent by the ESP8266 SDIO to corresponding
memories. The ESP8266 software will define the linked list registration structure (or array),
and buffer(s). In this example, only one buffer is used, and there is only one element in the
linked list. Write the first address of the buffer into the linked list registration structure, and
write in other information. When you write the first address of the linked list structure into
the corresponding hardware register in the ESP8266, the DMA can automatically process
the SDIO and the buffer.

The linked list registration structure is shown as below:
, 32bit
word0 owner eof | sub sof| 5 b0 l[(]e?gg? [;ing
wordl buf ptr[31:0]

word2 next link ptr[31:0]

e owner: 1'b0: operator of the current link buffer is SW; operator of the current link
buffer. MAC does not use this bit. 1'b1: operator of the current link buffer is HW.

e cof: flag of the end of the frame (for the end of AMPDU sub-frames, this flag is not
needed). When the MAC sends the frames, it is used to mark the end of the frames.
For links in eof, buffer_length[11:0] must be equal to the length of the remaining part
of the frame. Otherwise, the MAC will report an error. When the MAC receives frames,
it is used to indicate that the reception has been completed, and the value is set by
hardware.

16/104 2017.05

3. SPI Compatibility Mode User Guide

e sub_sof: the flag of the start of the sub-frame. It is used to distinguish different
AMPDU sub-frames. It is only used when the MAC is sending packets.

e length[11:0]: actual size of the buffer.
e size[11:0]: total size of the buffer.
e buf_ptr[31:0]: starting address of the buffer.

e next_link_ptr[31:0]: starting address of the next discripter. When the MAC is receiving
frames, the value is O, indicating that there is no empty buffer to receive the frames.

3.3.3. API Functions in The ESP8266 DEMO

Espressif

1. void sdio_slave_init(void)
Function: Initialise the SDIO module, including initialising the status register, initialising the
Rx and Tx registration linked list, configuring the communication interrupt line mode,

configuring packet-sending/receiving interruption, and registering the interrupt service
routine, etc.

2. void sdio_slave isr(void *para)
Function and trigger condition: The SDIO interrupt processing function; this function will be
triggered when the SDIO successfully receives or sends a packet. in DEMO, all the
ESP8266 testing procedures are completed in the interrupt processing function. All the

processing procedures of the registration linked lists, status registers and data during the
communication process can be found in this function.

3. void rx_buff_load _done(uintl6 rx_len)

Function: When rx_buffer receives new packets, this function should be called to change

the status of the new packets to "to be read". This function contains related operations of
the software/hardware of the registration linked list, and the status register. In DEMO, this
function will be called in the interrupt service routine.

Parameter: rx_len: actual length of the new packet (unit: byte).
4. void tx_buff_handle_done(void)

Function: When data in tx_buffer has been processed, this function should be called to
change the SDIO status to "sent" in order to receive the next packet. This function
contains related operations of the software/hardware of the registration linked list, and the
status register. In DEMO, this function will be called in the interrupt service routine.

5. void rx_buff_read done(void)

Function: When data in rx_buffe has been read, this function should be called to change
the SDIO status to "non-readable”. This function contains related operations of the status
register, and should be called at the beginning of the RX_EOF interrupt service.

6. void tx_buff_write_done(void)

Function: When tx_buffer receives new packets, this function should be called to change
the SDIO status to "non-writable". This function contains related operations of the status
register, and should be called at the beginning of the TX_EOF interrupt service.

17/104 2017.05

@ 3. SPI Compatibility Mode User Guide

7. TRIG_TOHOST_INT()
Function: Macro, pull low the communication interrupt line, inform the host.

8. Other functions
Other functions are used for tests.

3.4. STM32 Software Instruction

3.4.1. Important functions

1. void SdioRW(void *pvParameters)

Function:

SDIO testing thread, it contains all the read/write procedures.

Location:

egl_thread.c. Registered by SPITest () of the same file in egl_thread.c.
2. int esp_sdio_probe(void)

Function:

Enable related programs in the ESP8266.

Location:

esp_main_sim.c. Called by SPITest () inegl_thread.c.
3. int sif _spi_write bytes(u32 addr, u8*src,ul6 count,u8 func)

Function:

Write the SDIO byte mode into the API; encapsulate the write-in function of the CMD53
byte mode. It can process the register and the packets. According to the SDIO protocol,
the maximum data length is 512 Bytes.

Location:

port_spi.c. Called by SdioRW in egl_thread.c.
Parameters:

src: starting address of the packet to be sent.
count: length of the packet to be sent, (unit: Byte).

func: function number. It is O for communication of block_size in the block mode used to
revise the SDIO CMD53, and 1 for all other communications.

addr: starting address of the data to be written in. If you want to process the register, input
the corresponding address, for example, 0x30, interrupt line clearance register, 0x110,
revise block_size (func=0). If you want to process the packets, input a value that equals to
0x1f800 - tx_length, and 0x1f800 - tx_length should equal to count. If count > tx_lengt, the
SPI host will send packets of count length. But data between tx_length + 1 and count will

Espressif 18/104 2017.05

Espressif

3. SPI Compatibility Mode User Guide

be discarded by the ESP8266 SDIO module. Therefore, when sending packets, addr is
related to the actual length of the effective data.

4. int sif_spi_read bytes(u32 addr,u8* dst,ul6 count,u8 func)
Function:

The SDIO byte mode reads the API; encapsulate the read function of the CMD53 byte
mode. It can process the register or the packets. According to the SDIO protocol, the
maximum data length is 512 Bytes.

Location:
port_spi.c. Called by SdioRW in egl_thread.c.

Parameters:
dst: starting address of the receiving buffer
count: length of the packet to be received (unit: Byte)

func: function number. It is O for communication of block_size in the block mode used to
read the SDIO CMD53, and 1 for all other communications.

addr: starting address of the data to be read. If you want to operate the register, input the
corresponding address. For example, 0x20, the SDIO status register. If you want to operate
the packets, input a value that equals Ox1f800 - tx_length, and Ox1f800 - tx_length
equals count. If count > tx_length, the SPI host will send packets of count length. But
data between tx_length + 1 and count will be discarded by the ESP8266 SDIO
module. Therefore, when sending packets, addr is related to the actual length of the
effective data.

5. int sif_spi_write_blocks(u32 addr, u8 * src, ul6 count,ul6
block size)

Function:

Write the SDIO block mode into the API; encapsulate the write-in function of the CMD53
byte mode. It can only transport the packets, According to the SDIO protocoal, the
maximum data length is 512 blocks.

Location:

port_spi.c. Called by dioRWinegl thread.c and sif_io_sync used by the
program downloader in esp_main_sim.c.

Parameters:

src: starting address of the packet to be sent.

count: length of the packet to be sent (unit: block)

block_size: the number of bytes in 1 block. It should be equal to the 16 bit value whose
func=0, and whose addr=0x110-111. In general, when initialising the SDIO, block_size of
the ESP8266 SDIO should be configured. The starting value of DEMO is 512. During the

operation, it is configured to be 1024. block_size should be an integer multiple of 4.

19/104 2017.05

Espressif

3. SPI Compatibility Mode User Guide

addr: starting address of the data to be written in. Input a value that equals 0x1f300 -
tx_length (the same as the byte mode), and the tx_length should equal to count.

6. int sif_spi_read blocks(u32 addr, u8 *dst, ul6 count,ul6
block size)

Function:

Write the SDIO block mode into the API; encapsulate the write-in function of the CMD53
byte mode. It can only transport the packets, According to the SDIO protocol, the
maximum data length is 512 blocks.

Location:

port_spi.c. Called by dioRWin egl_thread.c and sif_io_sync used by the
program downloader in esp_main_sim.c.

Parameters:

src: starting address of the receiving buffer

count: length of the packet to be received (unit: block)

block_size: the number of bytes in 1 block. It should be equal to the 16 bit value whose
func =0, and whose addr=0x110-111. In general, when initialising the SDIO,

block size of the ESP8266 SDIO should be configured. The starting value of DEMO is
512. During the operation, it is configured to be 1024. block_size should be an integer
multiple of 4.

addr: starting address of the data to be read. Input a value that equals 0x1f800 -
tx_length (the same as the byte mode), and the tx_length should equal to count.

7. void EXTI9 5 IRQHandler (void)
Function:

The communication interrupt processing function offers enable signal for
egl arch _sem _wait (& BusIrgReadSem,1000) in thread function SdioRW, so that
SdioRW thread can exit the wait state, and read the SDIO status register.

Location:

spi_cfg.c

20/104 2017.05

4. SPI Communication User Guide

-l)

SPI Communication User
Guide

4.1. Overview

41.1. Functional Overview

ESP8266 SPI module is used for communication with devices supporting SPI protocols. It
supports the SPI protocol standard of 4 line communication (CS, SCLK, MOSI, MISO) in

the electrical interface. ESP8266 SPI module has special support for FLASH memory in
the SPI interface. Therefore, master and slave SPI module have its corresponding hardware
protocol to match with the SPI communication device.

4.1.2. SPI Features

* Supports standard master and slave modes;

e Supports length-programmable hardware commands and addresses, up to 16 bits
and 64 bits;

¢ Word-aligned data buffer, up to 64 bytes;

* Programmable read/write status register in slave mode;

¢ Selection of 3 CS pins;

¢ Clock frequency up to 80 MHz in master mode and 20 MHz in slave mode;
e Programmable clock polarity;

e MSB or LSB first;

e Selection of byte order in SPI buffer transmission;

e Selection of multiple interrupt sources, including transmit end, read/write data and
read/write status.

4.2. ESP8266 SPI Master Protocol Format

4.2.1. Communication Format Supported by Master SPI
Master ESP8266SPI communication format is command+address+read/write data, which
is,
e Command: a must; length: 1 ~ 16 bits; master output and slave input (MOSI).
e Address: optional; length: O ~ 32 bits; master output and slave input (MOSI).

¢ Read/write data: optional; length: O ~ 512 bits (64 Bytes); master output and slave
input (MOSI) or master input and slave output (MISO).

Espressif 21/104 2017.05

D)

4.2.2.

4.3.
4.3.1.

4.3.2.

4.3.3.

Espressif

4. SPI Communication User Guide

Master SPI Communication Format Supported by Current API

The API function of ESP8266 SPI has two master initialization modes: one supports most
of the general signals and the other is designed for driving a colored LCD screen. The
device needs non-standard 9 bits SPI communication format. Please refer to Section 4.4.1
for detailed information.

ESP8266 SPI Slave Protocol Format

SPI Slave Clock Polarity Configuration Requirement

The master device clock polarity configuration of ESP8266 SPI slave communication
should be set with idle low power , rising edge sampling and falling edge data
transformation. Please make sure to keep low power for CS in a 16’s reading/writing
process. If the CS power is raised to high level while sending, the internal state of slave will
be reset.

Communication Format Supported by Slave SPI

Slave ESP8266SPI communication format is almost the same as that of the master mode,
i.e. command-+address+read/write data, but the slave read/write operation has its
hardware command and undeletable address, which is,

e Command: a must; length: 3 ~ 16 bits; master output and slave input (MOSI).
e Address: a must; length: 1 ~ 32 bits; master output and slave input (MOSI).

* Read/write data: optional; length: O ~ 512 bits (64 Bytes); master output and slave
input (MOSI) or master input and slave output (MISO).

Command Definition Supported by Slave SPI

The length of slave receiving command should at least be 3 bits. For low 3 bits, there are
hardware reading and writing operation, which is,

e 010 (slave receiving) : Write the data sent by master into the register of slave data
caching via MOSI, i.e. SPI_FLASH_CO to SPI_FLASH_C15.

e 011 (slave sending): Send the data in the register of slave data caching (from
SPI_FLASH_CO to SPI_FLASH_C15) to master via MOSI.

e 110 (slave receiving and sending): Send slave data caching to MISO and write the
master data in MOSI into data caching SPI_FLASH_CO to SPI_FLASH_C15.

! Notice:
Other vales are used to read and write the status register of slave SPI, SPI_FLASH_STATUS. Please do not
use it because the difference between communication format and data caching reading/writing might lead to
slave read/write error.

22/104 2017.05

D)

4.3.4.

4.4.
4.4.1.

Espressif

4. SPI Communication User Guide

Slave SPI Communication Format Supported by Current API

The API function of ESP8266 SPI has a slave initialization mode which is compatible with
most of the devices in bytes. Set the slave communication format of 7 bits command+8
bits read/write data so that other master SPI devices could read and write bytes of slave
SPI via the 16 bits communication (or two times 8 bits with low lever CS). Please refer to
Section 4.4.2 for detailed information.

API Function Description of SPI Module

API Function Description of Master SPI
1. void spi_lcd mode_init(uint8 spi_no)
Function:

Provide master SPI initialization program for driving the chromatic LCD TM035PDZV36.

Parameter Description

The number of SPI module. Only input SPI(0) and

uint8 spi_no HSPI(1). Any other inputs are invalid.

2. void spi_lcd 9bit write(uint8 spi_no,uint8 high bit,uint8
low _8bit)
Function:
Provide master SPI transmitting program for driving the chromatic LCD TM0O35PDZV36.
The LCD module needs a 9 bits transmitting.
Parameter Description

The number of SPI module. Only input SPI(0) and

uint8 spi_no HSPI(1). Any other inputs are invalid.

he 9’s data. O represents the 9’s 0 and other data

uint8 high bit
&n_ represents the 9’s 1.

uint8 low_8bit Low 8 bit data.
3. void spi_master_init(uint8 spi_no)
Function:
Normal master SPI initialization function. Baud rate is the 1/4 frequency of CPU clock. Al
the master functions except spi_1lcd_9bit_write can be used after initialization.
Parameter Description

The number of SPI module. Only input SPI(0) and

uint8 spi_no HSPI(1). Any other inputs are invalid.

4. void spi_mast_byte write(uint8 spi_no,uint8 data)
Function:

Master data sending of one byte.

23/104 2017.05

@ 4. SPI Communication User Guide

Parameter Description

The number of SPI module. Only input SPI(0) and

uint8 spi_no HSPI(1). Any other inputs are invalid.

uint8 data 8 bit data sending.

5. void spi_byte write espslave(uint8 spi_no,uint8 data)
Function:
Write a Byte data for slave SPI.

As the slave is set at 7bits command+1bit address+8bits data, data sending requires 16
bits transmission and the first byte is 0b0000010+0 (refer to 3.3) , i.e. 0x04. The second
byte is data sending. The actual transmitting waveform is illustrated in Figure 4-1.

Parameter Description

The number of SPI module. Only input SPI(0) and

uintd spi_no HSPI(1). Any other inputs are invalid.

uint8 data 8 bit data sending.

Figure 4-1. The waveform of spi_byte_write_espslave written into slave ESP8266

LLl Note:
Yellow line: CS, blue line: CLK, red line: MOSI, green line: MISO.

6. void spi_byte read espslave(uint8 spi_no,uint8 *data)
Function:

Read one byte data from slave SPI and read other SPI slave devices. As the slave device is
set at 7bits command-+1bit address+8bits data, data sending requires 16 bits transmission
and the first byte is 0b0000011+0 (refer to Section 4.3.3), i.e. 0x06. The second Byte is
data sending. The actual operating waveform is illustrated in Figure 4-2.

Espressif 24/104 2017.05

@ 4. SPI Communication User Guide

For other full duplex slave devices, 16 bits slave communication should be set. The
effective data should be put to the second byte of slave sending caching which will be
received by master ESP8266.

Parameter Description

The number of SPI module. Only input SPI(0) and

uint8 spi_no HSPI(1). Any other inputs are invalid.

uint8 data 8 bit memory address data receiving.

AnAnAnAAN
oavbyyvy

Figure 4-2. The slave waveform of spi_byte_read_espslave read from ESP8266

LLl Note:
Yellow line: CS, blue line: CLK, red line: MOSI, green line: MISO.

4.4.2. Master SPI API Function Description

1. void spi_slave_init(uint8 spi_no)
Function:

Initialization of slave SPI mode. Configure 10 interface to SPI mode, enable SPI
transmission interruption and register the function spi_slave_isr_handler.

Communication format is set at 7bits command +1bit address+8bits read/write data.
Command and address combines to be high 8 bits and the address must be 0. According
to descriptions in 3.3, it supports the three master commands, i.e. 0x04 master write and
slave read, OxO6master write and slave read, 0xOc master and slave read/write. The
communication waveform is illustrated in Figure 4-1, 4-2.

Parameter Description

The number of SPI module. ESP8266 processor has two SPI
spi_no modules with the same function, i.e. SPI and HSPI.

Optional values: SPI or HSPI.

Espressif 25/104 2017.05

D)

4. SPI Communication User Guide

2. spi_slave_isr_handler(void *para)

Function and trigger condition:

SPIinterrupt processing function. Interruption will be triggered if the master operates the
correct transmission operation(read/write slave).

Code:

isr,

bit,

//0x3ff00020 is isr flag register, bit4d is for spi isr,
if (READ_PERI_REG(Ox3ff00020)&BIT4) {

telse

//following 3 lines is to close spi isr enable
regvalue=READ_PERI_REG(SPI_FLASH SLAVE(SPI));
regvalue&=~(0x3ff);
WRITE_PERI_REG(SPI_FLASH_SLAVE(SPI),regvalue);
//os_printf("SPI ISR 1is trigged\n"),; //debug code

if (READ_PERI_REG(Ox3ff00020)&BIT7){ //bit7 is for hspi

//following 3 lines is to clear hspi isr signal
regvalue=READ_PERI REG(SPI_FLASH_SLAVE(HSPI));
regvalue&=~(0x1f);

WRITE PERI REG(SPI_FLASH SLAVE(HSPI),regvalue);

//when master command is write slave 0x04,

//recieved data will be occur in register SPI_FLASH CO's low 8

//also if master command 1is read slave 0x06,

//the low 8bit data in register SPI_FLASH CO will transmit to

master,

isr,

//

//so prepare the transmit data in SPI_FLASH CO' low 8bit,
//if a slave transmission needs
recv_data=(uint8)READ_PERI_REG(SPI_FLASH CO(HSPI));

/*put user code here*/

os_printf("recv data is %08x\n", recv_data);//debug code

telse if(READ_PERI_REG(Ox3ff00020)&BIT9){ //bit9 is for 1i2s

}

Espressif

Code description: As SPI store the FLASH chip by the read/write program, HSPI is used for
communication. For ESP8266 processor, there are multiple devices that share the
interruption function, including SPI module, HSPI module, 12S module, the 4’s, 7’s and 9’s
0x3ff00020 in the register.

26/104 2017.05

@ 4. SPI Communication User Guide

As SPI module triggers transmission interruption frequently, 5 interruption source enabled
should be closed. The corresponding codes are as follows:

regvalue=READ_PERI_REG(SPI_FLASH SLAVE(SPI));
regvalue&=~(0x3ff);

WRITE_PERI_REG(SPI_FLASH_SLAVE(SPI),regvalue);

If HSPI is triggered, software that resets the 5 interruption source is needed, in order to
avoid the repeated interruption function. The corresponding codes are as follows:

regvalue=READ_PERI_REG(SPI_FLASH_SLAVE(HSPI));
regvalue&=~(0x1f);

WRITE_PERI_REG(SPI_FLASH_SLAVE (HSPI),regvalue);

Data receiving and transmitting data share one register, SPI_FLASH_CO. The
corresponding codes of readout register are as follows:

recv_data=(uint8)READ_PERI_REG(SPI_FLASH CO(HSPI));

recv_data is a global variable. Processing program defined by users can be inserted to
the tail of the sentence.

! Notice:

Interruption program is unfit for time-consuming processing code because long-time interruption program will
cause watchdog timer unable to realize normal reset and will also lead to unexpected restart of processor.

4.5. SPI Interface Description

! Notice:

The contents of this chapter are applicable only for Non-OS SDK V1.5.3 and above.

4.5.1. Data Structure

4.5.1.1. Enumerated Values

SpiMode

Value Description
SpiMode_Master Master mode
SpiMode_Slave Slave mode
SpiSubMode

Value Description
SpiSubMode_0 SPI_CPOL (0) SPI_CPHA (0)
SpiSubMode_1 SPI_CPOL (0) SPI_CPHA (1)

Espressif 27/104 2017.05

@ 4. SPI Communication User Guide

SpiSubMode_2 SPI_CPOL (1) SPI_CPHA (0)

SpiSubMode_3 SPI_CPOL (1) SPI_CPHA (1)

w
B,
(7]
ge]
0]
o
o

SpiSpeed_0_5MHz SPI speed at 0.5 MHz

SpiSpeed_1MHz SPI speed at 1 MHz

SpiSpeed_2MHz SPI speed at 2 MHz

SpiSpeed_5MHz SPI speed at 5 MHz

SpiSpeed_8MHz SPI speed at 8 MHz

SpiSpeed_10MHz SPI speed at 10 MHz
SpiBitOrder

SpiBitOrder_MSBFirst MSB first
SpiBitOrder_L SBFirst LSB first
SpilntSrc

SpilntSrc_TransDone Transmit complete interrupt
SpilntSrc_WrStaDone Write status register interrupt
SpilntSrc_RdStaDone Read status register interrupt
SpilntSrc_WrBufDone Write data register interrupt
SpilntSrc_RdBufDone Read data register interrupt

(7]
T,
3
>

(@)
»

SpiPINCS_0 CSO0 pin
SpiPINCS_1 CS1 pin
SpiPiNCS_2 CS2 pin

4.5.1.2. Structure

LLI Note:
For details that require attention, please refer to ESP8266 SDK API Guide.

Espressif 28/104 2017.05

SpiAttr

SPI parameters configuration

4. SPI Communication User Guide

typedef struct

{
SpiMode mode ; ///< Master or slave mode
SpiSubMode subMode; ///< SPI SPI_CPOL SPI_CPHA mode
SpiSpeed speed; ///< SPI Clock
SpiBitOrder bitOrder; ///< SPI bit order

} SpiAttr;

SpiData

Data structure of SPI transmission

typedef struct

{
uintle_t cmd; ///< Command value
uint8_t cmdLen; ///< Command byte length
uint32_t *addr; ///< Point to address value
uint8_t addrLen; ///< Address byte length
uint32_t *data; ///< Point to data buffer
uint8_t datalen; ///< Data byte length.

} SpiData;

Spilntinfo

Information structure of SPI interrupt configuration

typedef struct
{

SpilntSrc src; ///< Interrupt source

void *isrFunc; ///< SPI interrupt callback function.

} SpilntInfo;

4.5.1.3. Constants

Espressif

ESP8266 Commands

Name
MASTER_WRITE_DATA_TO_SLAVE_CMD
MASTER_READ_DATA_FROM_SLAVE_CMD

MASTER_WRITE_STATUS_TO_SLAVE_CMD

29/104

Value Description

2
3

1

Write data command in ESP8266 slave mode.
Read data command in ESP8266 slave mode.

Write status register command in ESP8266 slave
mode.

2017.05

@ 4. SPI Communication User Guide

Read status register command in ESP8266 slave

MASTER_READ_STATUS_FROM_SLAVE_CMD 4 mode

4.5.2. API Description

LLI Note:
For details that require attention, please refer to ESP8266 SDK AP| Guide.

4.5.2.1. SPlInit
Description
SPI module initialization.

Function

void SPIInit(SpiNum spiNum, SpiAttr* pAttr);

Parameter Description
spiNum [in] choose SPI and HSPI.
pAttr [in] a pointer to SpiAttr structure.

Return value
Null

LLl Notes:
e In slave mode, the default CMD length is 8 bits, ADDR length 8 bits, DATA length 32 bytes.

e No support currently for transmission with only DATA.

* The maximum DATA length is 64 bytes in a single transmission.

4.5.2.2. SPIMasterCfgAddr
Description
Configure address register.

Function

void SPIMasterCfgAddr (SpiNum spiNum, uint32_t addr);

Parameter Description
spiNum [in] choose SPI and HSPI.

addr [in] address to set.

Return value
Null

Espressif 30/104 2017.05

@ 4. SPI Communication User Guide

LLI Notes:
e [fthe address length is over 32 bits, the user needs to configure the SPI_WR_STATUS register.

e Address transmission is in high-byte order.

4.5.2.3. SPIMasterCfgCmd
Description
Configure SPI command register.

Function

Void SPIMasterCfgCmd(SpiNum spiNum, uint32 t cmd);

Parameter Description
spiNum [in] choose SPI and HSPI.
cmd [in] command value to set.

Return value
Null

Ll Note:

CMD length is up to 16 bits and the transmission is in low-byte order.

4.5.2.4. SPIMasterSendData
Description
Master sends data according to the plnData buffer.

Function

int SPIMasterSendData(SpiNum spiNum, SpiData* pInData);

Parameter Description
spiNum [in] choose SPI and HSPI.

[in] a pointer to SpiData structure. The command,

pInData address, data buffer and length should be specified.

Return value
e (: Success

e Others: Failure

LLI Note:
DATA transmission is in low-byte order.

Espressif 31/104 2017.05

4.5.2.5. SPIMasterRecvData
Description
Master receives data.

Function

4. SPI Communication User Guide

int SPIMasterRecvData(SpiNum spiNum,

SpiData* pOutData);

Parameter

spiNum

pOutData

Description

[in] choose SPI and HSPI.

[in] a pointer to SpiData structure. The command, address, data buffer

and length should be specified.

Return value
* (: Success
e QOthers: Failure
4.5.2.6. SPISlaveSendData
Description
Upload data to SPI' W8 ~ W15.

Function
int SPISlaveSendData(SpiNum spiNum, uint32_t *pInData, uint8_t
inLen);

Parameter Description
spiNum [in] choose SPI and HSPI.
pInData [in] a pointer to buffer.
inLen [in] buffer length.

Return value

e (: Success

e QOthers: Failure

LLl Notes:

* This function is only used to upload the data to SPI W8 ~ W15. Upon receiving
MASTER_READ_DATA_FROM_SLAVE_CMD, ESP8266 will automatically transmit data.

e The default value is 32 bytes, with 64 bytes the maximum.

4.5.2.7. SPISlaveRecvData
Description

Slave receives data.

Espressif 32/104

2017.05

@ 4. SPI Communication User Guide

Function

int SPISlaveRecvData(SpiNum spiNum);

spiNum [in] choose SPI and HSPI.

Return value
e 0: Success
e QOthers: Failure
4.5.2.8. SPIMasterSendStatus
Description
Master writes data to slave’s status register.

Function

void SPIMasterSendStatus(SpiNum spiNum, uint8_t data);

spiNum [in] choose SPI and HSPI.

data [in] data to write into status register.

Return value
Null
4.5.2.9. SPIMasterRecvStatus
Description
Master reads data from slave’s status register.

Function

int SPIMasterRecvStatus(SpiNum spiNum) ;

spiNum [in] choose SPI and HSPI.

Return value
* (: Success
e Others: Failure

1l Note:
The status register value of the slave is stored in SPI buffer WO.

Espressif 33/104 2017.05

4. SPI Communication User Guide

4.5.2.10.SPICsPinSelect

Description
Select CS pin.

Function

void SPICsPinSelect(SpiNum spiNum, SpiPinCS pinCs);

spiNum [in] choose SPI and HSPI.

pinCs [in] pin to select.

Return value
Null

LI Note:
CS Pin can only be changed after transmission ends.

4.5.2.11.SPlIntCfg

Description
Set interrupt source and terminal callback function.

Function

void SPIIntCfg(SpiNum spiNum, SpilntInfo *pIntInfo) ‘

spiNum [in] choose SPI and HSPI.

pIntInfo [in] a pointer to Spilntinfo with interrupt source and interrupt callback function.

Return value
Null

4.5.2.12.SPlIntEnable

Description
Set the available interrupt source.

Function

void SPIIntEnable(SpiNum spiNum, SpilIntSrc intSrc); ‘

Espressif

spiNum [in] choose SPI and HSPI.
intSrc [in] interrupt to set, please refer to Section 4.5.1.1 SpilntSrc.
34/104 2017.05

@ 4. SPI Communication User Guide

Return value
Null
4.5.2.13.SPlIntDisable
Description
Set disable interrupt source.

Function

void SPIIntDisable(SpiNum spiNum, SpiIntSrc intSrc);

Parameter Description
spiNum [in] choose SPI and HSPI.

intSrc [in] interrupt to set, please refer to Section 4.5.1.1 SpilntSrc.

Return value
Null
4.5.2.14.SPlIntClear
Description
Clear all interrupt sources.

Function

void SPIIntClear (SpiNum spiNum);

Parameter Description

spiNum [in] choose SPI and HSPI.

Return value
Null

4.5.3. SPI_Test Demo

The communication format is CMD + ADDR + Data when ESP8266 is in slave mode. The
transmission only with DATA is not supported currently. As the slave, ESP8266 can
respond to different commands. The CMD default values are as follows:

e CMD = 2, write data to the ESP8266 data register WO ~ W15;
e CMD = 3, read data from the ESP8266 data register;

e CMD =1, write data to the ESP8266 status register;

e CMD = 4, read data from the ESP8266 status register.

Spi_test demo is based on the SPI communication between two ESP8266. The
communication test followed the steps below.

1. Master sends 32-byte data to slave.
2. Master receive data from slave.

Espressif 35/104 2017.05

@ 4. SPI Communication User Guide

3. Master read data from the status register of the slave.
4. Master writes data to the status register of the slave.

The slave will receive interrupts in order from SPI_SLV_WR_BUF_DONE,
SPI_SLV_RD_BUF_DONE, SPI_SLV_RD_STA_DONE, SPI_SLV_WR_STA_DONE.

4.5.3.1. Hardware Connection

ESP8266 Master ESP8266 Slave
MTDI MTDI
MTCK MTCK
MTMS MTMS
MTDO MTDO

Figure 4-3. Test Demo Hardware Connection

Figure 4-3 shows the test demo hardware connection. The master and the slave are
connected via HSPI. MTCK pin is SPI. MOSI, MTDI pin is SPI MISO, MTMS pin is SPI Clock
and MTMO pin is SPI CS pin.

4.5.3.2. Program Introduction
spi_master_test

Master uses SPI buffer starting from WO.

void ICACHE_FLASH_ATTR spi_master_test()

{
SpiAttr hSpiAttr;
hSpiAttr.bitOrder = SpiBitOrder_MSBFirst;
hSpiAttr.speed = SpiSpeed 10MHz;
hSpiAttr.mode = SpiMode_Master;
hSpiAttr.subMode = SpiSubMode_0;

// Init HSPI GPIO
WRITE_PERI_REG(PERIPHS_IO_MUX, 0x105);

PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDI U, 2);//configure io to spi
mode

Espressif 36/104 2017.05

@ 4. SPI Communication User Guide

PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK U, 2);//configure io to spi
mode

PIN_FUNC_SELECT(PERIPHS_ IO MUX_MTMS_ U, 2);//configure io to spi
mode

PIN FUNC_SELECT(PERIPHS IO MUX MTDO U, 2);//configure io to spi
mode

SPIInit(SpiNum_HSPI, &hSpiAttr);
uint32_t value = 0xD3D4D5D6;
uint32_t sendData[8] ={ 0 };
SpiData spiData;

os_pr'intf("\r\n ————————————— Sp] init master ———o—————————
\r\n");

// Test 8266 slave.Communication format: lbyte command + lbytes
address + x bytes Data.

os_printf("\r\n Master send 32 bytes data to slave(8266)\r\n");
os_memset(sendData, 0, sizeof(sendData));
sendData[0@] = 0x55565758;

sendData[l] = 0x595a5b5c;

sendData[2] = 0x5d5e5f60;

sendData[3] = 0x61626364;

sendData[4] = 0x65666768;

sendData[5] = 0x696a6b6c;

sendData[6] = 0x6d6e6f70;

sendData[7] = Ox71727374;

spiData.cmd = MASTER_WRITE_DATA TO_SLAVE_CMD;
spiData.cmdLen = 1;

spiData.addr = &value;

spiData.addrLen = 4;

spiData.data = sendData;

spiData.datalen = 32;
SPIMasterSendData(SpiNum_HSPI, &spiData);

Espressif 37/104 2017.05

4. SPI Communication User Guide

os_printf("\r\n Master receive 24 bytes data from
slave(8266)\r\n");

spiData.cmd = MASTER_READ_DATA_FROM_SLAVE_CMD;
spiData.cmdLen = 1;

spiData.addr = &value;

spiData.addrLen = 4;

spiData.data = sendData;

spiData.datalen = 24;

os_memset(sendData, 0, sizeof(sendData));
SPIMasterRecvData(SpiNum_HSPI, &spiData);

os_printf(" Recv Slave data@[0x%08x]\r\n", sendDatal[0]);
os_printf(" Recv Slave datal[0x%08x]\r\n", sendData[l]);
os_printf(" Recv Slave data2[0x%08x]\r\n", sendData[2]);
os_printf(" Recv Slave data3[0x%08x]\r\n", sendData[3]);
os_printf(" Recv Slave datad[0x%08x]\r\n", sendDatal[4]);
os_printf(" Recv Slave data5[0x%08x]I\r\n", sendDatal[5]);

// read the value of slave status register
value = SPIMasterRecvStatus(SpiNum_HSPI);

os_printf("\r\n Master read slave(8266) status[Ox%02x]\r\n",
value);

// write 0x99 into the slave status register

SPIMasterSendStatus (SpiNum_HSPI, 0x99);

os_printf("\r\n Master write status[0x99] to slavue(8266).\r\n");
SHOWSPIREG(SpiNum_HSPI);

// Test others slave.Communication format:@bytes command + O bytes
address + x bytes Data

#if 0
os_printf("\r\n Master send 4 bytes data to slave\r\n");
os_memset(sendData, 0, sizeof(sendData));

sendData[0] Ox2D3E4F50;

spiData.cmd = MASTER_WRITE_DATA_TO_SLAVE_CMD;

spiData.cmdLen = 0;

Espressif

38/104 2017.05

4. SPI Communication User Guide

spiData.addr = &addr;

spiData.addrLen = 0;

spiData.data = sendData;

spiData.datalen = 4;
SPIMasterSendData(SpiNum_HSPI, &spiData);

os_printf("\r\n Master receive 4 bytes data from slaver\n");
spiData.cmd = MASTER_READ_DATA_FROM_SLAVE_CMD;
spiData.cmdLen = 0;

spiData.addr = &addr;

spiData.addrLen = 0;

spiData.data = sendData;

spiData.datalen = 4;

os_memset (sendData, 0, sizeof(sendData));
SPIMasterRecvData(SpiNum_HSPI, &spiData);

os_printf(" Recv Slave data[0x%08x]\r\n", sendData[0]);

#endif

}

spi_slave_test

The SPI buffer used by the slave starts from W8. The program configures SPI mode first
and initializes GPIO. Then it receives the data from the master and uploads the data to SPI
buffer, waiting for the master to read. Finally, the program will modify the value of the status
register.

void ICACHE_FLASH_ATTR spi_slave_test()

{

// SPI dinitialization configuration, speed = 0 in slave mode
SpiAttr hSpiAttr;

hSpiAttr.bitOrder = SpiBitOrder_MSBFirst;

hSpiAttr.speed = 0;

hSpiAttr.mode = SpiMode_Slave;

hSpiAttr.subMode = SpiSubMode 0;

// Init HSPI GPIO
WRITE_PERI_REG(PERIPHS_IO_MUX, 0x105);

Espressif

39/104 2017.05

4. SPI Communication User Guide

mode

mode

mode

mode

PIN_FUNC_SELECT(PERIPHS IO MUX_MTDI U, 2);//configure io to spi

PIN_FUNC_SELECT(PERIPHS_ IO MUX_MTCK U, 2);//configure io to spi

PIN FUNC_SELECT(PERIPHS IO MUX MTMS U, 2);//configure io to spi

PIN_FUNC_SELECT(PERIPHS IO MUX_MTDO U, 2);//configure io to spi

os_printf("\r\n ============= gspi init slave ========

SPIInit(SpiNum_HSPI, &hSpiAttr);

// Set spi interrupt information.
SpilntInfo spilnt;
spilnt.src = (SpiIntSrc_TransDone
| SpiIntSrc_WrStaDone
|SpiIntSrc_RdStaDone
|SpiIntSrc_WrBufDone
|SpiIntSrc_RdBufDone);
spilnt.isrFunc = spi_slave isr_sta;
SPIIntCfg(SpiNum_HSPI, &spilnt);
// SHOWSPIREG(SpiNum_HSPI);

SPISlaveRecvData(SpiNum_HSPI);
uint32_t sndDatal8] = { 0 };
sndData[0] 0x35343332;
sndData[l] = 0x39383736;
sndData[2] = 0x3d3c3b3a;

sndData[3] = 0x11103f3e;
sndData[4] = 0x15141312;
sndData[5] = 0x19181716;
sndData[6] = Oxldlclbla;
sndData[7] = 0x21201fle;

// write 8 word (32 byte) data to SPI buffer W8~W15

SPIS
// s

laveSendData(SpiNum_HSPI, sndData, 8);

et the value of status register

Espressif

40/104

2017.05

@ 4. SPI Communication User Guide

WRITE_PERI_REG(SPI_RD_STATUS(SpiNum_HSPI), Ox8A);
WRITE_PERI_REG(SPI_WR_STATUS (SpiNum_HSPI), 0x83);

}

spi_slave_isr_sta

// SPI dinterrupt callback function.

void spi_slave_isr_sta(void *para)

{
uint32 regvalue;
uint32 statusW, statusR, counter;
if (READ_PERI_REG(Ox3ff00020)&BIT4) {
//following 3 lines is to clear isr signal
CLEAR_PERI_REG_MASK(SPI_SLAVE(SpiNum_SPI), Ox3ff);
} else if (READ_PERI_REG(Ox3ff00020)&BIT7) { //bit7 is for hspi
isr,

regvalue = READ_PERI REG(SPI_SLAVE(SpiNum_HSPI));

os_printf("spi_slave_isr_sta SPI_SLAVE[Ox%08x]\n\r",
regvalue);

SPIIntClear (SpiNum_HSPI);
SET_PERI_REG_MASK(SPI_SLAVE(SpiNum_HSPI), SPI SYNC_RESET);
SPIIntClear (SpiNum_HSPI);

SPIIntEnable(SpiNum_HSPI, SpiIntSrc_WrStaDone
| SpiIntSrc_RdStaDone
| SpiIntSrc_WrBufDone
| SpiIntSrc_RdBufDone) ;

if (regvalue & SPI_SLV_WR_BUF_DONE) {
// User can get data from the WO~W7
os_printf("spi_slave_isr_sta : SPI_SLV_WR_BUF_DONE\n\r");
} else if (regvalue & SPI_SLV_RD BUF_DONE) {
// TO DO
os_printf("spi_slave_isr_sta : SPI_SLV_RD_BUF_DONE\n\r");
}
if (regvalue & SPI_SLV_RD_STA_DONE) {
statusR = READ_PERI_REG(SPI_RD_STATUS(SpiNum_HSPI));

Espressif 41/104 2017.05

@ 4. SPI Communication User Guide

statusW = READ_PERI_REG(SPI_WR_STATUS (SpiNum_HSPI));

os_printf("spi_slave_isr_sta
SPI_SLV_RD_STA DONE[R=0x%08x,W=0x%08x]\n\r", statusR,

statusW) ;

if (regvalue & SPI_SLV_WR_STA DONE) {
statusR = READ_PERI_REG(SPI_RD_STATUS (SpiNum_HSPI));
statusW = READ_PERI_REG(SPI_WR_STATUS (SpiNum_HSPI));

os_printf("spi_slave isr_sta
SPI_SLV_WR STA DONE[R=0x%08x,W=0x%08x]1\n\r", statusR, tatusW);

}
if ((regvalue & SPI_TRANS_DONE) && ((regvalue & 0Oxf) == 0)) {

os_printf("spi_slave_isr_sta : SPI_TRANS_DONE\n\r");

}
SHOWSPIREG(SpiNum_HSPI);

}

4.5.3.3. Running Log and Waveform Graphs
ESP8266 Master

Master log is as shown in Figure 4-4.

Espressif 42/104 2017.05

Espressif

_interface_test application
SDK version:1.5.3(827143cc)
Complie time:17:13:3

spil init master =

Master send 32 bytes data to slave(8266)

Master receive 24 bytes data from slave(8266)
Recv Slave data®[0x38373635]
Recv Slave datal[©x3c3b3a39
Recv Slave data2[0x103f3e3d

Recv Slave data4[0x18171615

1
1
Recv Slave data3[0x14131211]
1
1

Recv Slave dataS[6x1clblal9

Master read slave(8266) status[0x83]

Master write status[0x99] to slavue(8266).

FUNC[spi_master_
[0xd3d4d5d6]
[0x00001001
[0x0028a737
[6x00040011
[0x000070c7

SPI_ADDR
SPI_CMD
SPI_CTRL
SPI_CTRL2
SPI_CLOCK

test],line[176]

SPI_RD_STATUS [6x00000000

SPI_USER
SPI_USER1
SPI_USER2
SPI_PIN
SPI_SLAVE
SPI_SLAVE1
SPI_SLAVE2

|
|
|
]
|
SPI_WR_STATUS [0x00000000]
|
]
|
|
|
|

[0x88000070
[6x7c0ed700
[6x70000001
[0x0000001e
[0x02000210
[6x62000000
[6x00000000]

ADDR[0x60000140], Value[0x00000099

ADDR[©x60000144
ADDR[0x60000148
ADDR[0x6000014c
ADDR[6x60000150

1
,Value[Bx3c3b3a39]
,Value[0x103f3e3d]
,Value[6x14131211]
,Value[6x18171615]
]

ADDR[0x60000154], Value[Ox1c1blal9

Figure 4-4. Master Log

4. SPI Communication User Guide

In Figure 4-5, the yellow area is the command 0x02 which means the master writes data to
the slave, the red area is the address register 0x00, and the green area is the data written,
with the low byte being transmitted first.

Figure 4-5. Waveform Graph 1

43/104

2017.05

Espressif

4. SPI Communication User Guide

In Figure 4-6, the yellow area is the command 0x03 which means the master reads data
from the slave, the red area is the address register 0x00, and the green MISO area is the
data in SPI buffer.

0-CLOCK | § Fmicem

039 TO:CAT0:EE T 0:3C T 0:3D T 0X3E TO:3F T 0x10 T OIT 02 03T 04 T 0xI5 T 0x16 T 0x17 T 0xI8 T 0x19

ML

3-ENABLE F¥=F=Tem

Figure 4-6. Waveform Graph 2

In Figure 4-7, the yellow area is the command 0x04 which means the master reads data
from the slave, the red area is the address register 0x00, and the green MISO area is the

value of the slave's status register.
0-CLOCK | F =i

il

3-ENABLE M-

Figure 4-7. Waveform Graph 3

In Figure 4-8, the yellow area is the command 0x01 which means the master writes to the
slave's status register, the purple area is the value written to the slave's status register.

44/104 2017.05

Espressif

4. SPI Communication User Guide

ESP8266 Slave

Slave log is as shown in Figure 4-9.

Figure 4-8. Waveform Graph 4

=== spi init slave =
: softAP(la:fe:34:a1:32:d7)

dhcp server start:(ip:192.168.4.1,mask:255.255.255.0,9w:192.168.4.1)

bcn 100

spi_slave_isr_sta SPI_SLAVE[0x47f401f2]
: SPI_SLV_WR_BUF_DONE

spi_slave_isr_sta

FUNC[spi_slave_isr_stal,line[108]
SPI_ADDR [6xd3000000]
SPI_CMD [6x00049002]
SPI_CTRL [0x0028a000]
SPI_CTRL2 [6x00800011]
SPI_CLOCK [0x00000000]
SPI_RD_STATUS [0x0000008a
SPI_WR_STATUS [0x00000083
SPI_USER [6xd16000040
SPI_USER1 [ex1dfeffoO

SPI_PIN [0x0008001e
SPI_SLAVE [ox45f201fd

]
]
]
]
SPI_USER2 [06x70000004]
]
]
]

SPI_SLAVE1 [0x3afflc70
SPI_SLAVE2 [0x00000000]

ADDR[0x60000140] ,
ADDR[0x60000144],
ADDR[0x60000148],
ADDR[0x6000014c],
ADDR[0x60000150] ,
ADDR[0x60000154],
ADDR[0x60000158] ,
ADDR[0x6000015c],
ADDR[0x60000160],
ADDR[0x60000164],
ADDR[0x60000168] ,
ADDR[0x6000016c],
ADDR[0x60000170],
ADDR[0x60000174],
ADDR[0x60000178],
ADDR[0x6000017c],
spi_slave_isr_sta
spi_slave_isr_sta
spi_slave_isr_sta
spi_slave_isr_sta

Value[0x58d6d5d4]
Value[0x5c555657]
Value[06x60595a5h]
Value[0x645d5e5f]
Value[0x68616263]
Value[Ox6c656667]
Value[0x70696a6b]
Value[0x746d6e6f]
Value[0x35343332]
Value[0x39383736]
Value[0x3d3c3b3al
Value[0x11103f3e]
Value[6x15141312]
Value[6x19181716]
Value[6x1dlclbla]
Value[0x21201f1le]

SPI_SLAVE [0x45201fd]
: SPI_SLV_RD_BUF_DONE

: SPI_SLV_RD_STA_DONE [R=Dx0000008a , W=0x00000099]
: SPI_SLV_WR_STA_DONE [R=0x0000008a , W=0x00000099]

Figure 4-9. Slave Log

45/104

2017.05

5. SPI Overlap & Display Application Guide

o &

SPI Overlap & Display
Application Guide

5.1. Functional Overview

The Overlap mode of ESP8266 Host SPI allows for two SPI modes (SPI and HSPI) to reuse
the same 10 interface (such as SCLK, MOSI and MISO) for the operation of multiple slave
SPI devices. The hardware supports 3 line chip selection. If there are additional 3 slave
devices, GPIO can be adopted as CS signal for the communication of multiple slave device.

Generally speaking, in order to ensure that the CPU can be running at high efficiency, SPI
module is used to read the running program from external Flash to CPU CACHE, while
HSPI module is used to operate slave devices of other users. Under Overlap mode, the
hardware will automatically arbitrate the control of two SPI modules to the current pin signal
for time-sharing application. If the software starts HSPI commmunication, the arbitration
signal will delay the start of HSPI block communication via the working of SPI. The
arbitration signal is then allowed to start the communication of HSPI 10 interface after SPI
finishes reading the program codes for communication. This is illustrated in Figure 1. For
user software, only a switch of the corresponding CS signal before the start of
communicator is needed. Other operations are of no difference to the use of single HSPI

communication.
Mosi —>»
Miso . | MUX SD_DATA1—
Sclk A e
SPI Cs0 R A
ct 1 “| MUX SD_DATAO—>
Cs2 f—— »
A
D W MUX SD_CLK—<>
A
LAV ;
MUX SD_CMD
| _O
A
MoOSi et] >
Miso —s— | _| MUX Uo_TXD—<>
HSP| sck —p— —
Cs0 — A >
Esi MUX +———GPIoo—<>
S »

I_f

ARBIT

Figure 5-1. SPI Overlap Block Diagram

Espressif 46/104 2017.05

D)

5. SPI Overlap & Display Application Guide

Please refer to Chapter 4 EPS8266 SPI Communication User Guide for more
information about the application method of Host SPI Module. The configuration method of
Overlap mode is discussed in detail below.

5.2. Hardware Connection of SPI Overlap Mode

Pins including SD_CLK, SD_DATAOQ, and SD_DATA1 correspond to pins SCLK, MISO and
MOSI in two SPI modes, while pins SD_CMD, UOTXD, and GPIOO correspond to chip
selection (CS) signals CS0, CS1, and CS2 respectively. Generally, SD_CMD connects to
the CS signal of an external Flash, while UOTXD and GPIOO can be connect with the CS
signals of two slave devices. It can connect to the CS signal of two salve devices. Besides,
HSPI can read and write Flash data through enabled CSO0, independent of SPI (e.g. Read
some pre-stored user data).

If more SPI devices are needed, device can be selected via other GPIOs, while CS0, CS1,
and CS2 are blocked by the configuration register.

5.3. API Description of SPI Overlap Mode

1. void hapi_overlap_init(void)
Function:

After SPI Overlap mode has been initialized, and SPI and HSPI interfaces are invoked,
interfaces including CLK, MOSI, and MISO can be shared with SPI and HSPI interfaces to
communicate with different devices. By default, CS2 is the CS signal of HSPI interface.
Please be careful when switching CS signals during commmunication.

Location:
\app\user\user_main.c in the DEMO.

2. SELECT_OLED(),SELECT_TFT()
Function:

Switch the CS pin of HSPI and OLED in DEMO connects to CS2. TFTLCD connects to
CS1. Before the start of HSPI communication, macro needs to be called. The macro
definition is as follows:

#define SELECT OLED() CLEAR_PERI_REG_MASK(SPI_PIN(HSPI),
SPI_CS2 DIS):\

SET_PERI_REG_MASK(SPI_PIN(HSPI), SPI_CS® DIS |SPI_CS1 DIS)

#define SELECT TFT() CLEAR_PERI_REG_MASK(SPI_PIN(HSPI),
SPI_CS1 _DIS):\

SET_PERI_REG_MASK(SPI_PIN(HSPI), SPI_CS® DIS |SPI_CS2_DIS)

Therefore, users can change the macro definition. For example, the following macro can be
defined if HSPI is used to the operate Flash:

#define SELECT_FLASH() CLEAR_PERI_REG_MASK(SPI_PIN(HSPI),
SPI_CSO_DIS);\

Espressif

47/104 2017.05

@ 5. SPI Overlap & Display Application Guide

SET_PERI_REG_MASK(SPI_PIN(HSPI), SPI_CS1 DIS |SPI_CS2 DIS)

If normal GPIO is used for CS, the following is needed:

#define DISABLE_CS()\

SET_PERI_REG_MASK(SPI_PIN(HSPI), SPI_CS® DIS |SPI_CS1 DIS |
SPI_CS2_DIS)

Location:
\app\include\user_Icd.h in the DEMO.

Please refer to Chapter 4 EPS8266 SPI Communication User Guide for more
information about other host SPI communication.

5.4. Display Screen Console Program DEMO

The DEMO is used to print simple strings on display screens, including LCD for parameter
display and debug printing. DEMO driver supports two screens currently, i.e. 3.5-inch
TMO35PDZV36 480*320 TFT colored LCD and Zhong JY. Tech 1.3-inch 128*640LED. The
driver programs can communicate with the display screen via ESP8266 HSPI interface
under Overlap mode.

Under SPI Overlap mode, the two screens and 8266 external program flash chip share
SCLK, MOSI and MISO signals on the SPI bus. Different CS signals are used in different
device.

5.4.1. Connection Description

Zhong JY. Tech 1.3-inch OLED Connection

The signals in OLED, i.e. SCLK, MOSI, CS, DC, RESET connects to the pins in 8266, i.e.
SD_CLK, SD_DATA1, GPIO0O, MTCK, GPIO5 respectively. The VCC in OLED and GND
connects to 3.3V network and GND on DEMO board.

Tian Ma 3.5-inch TFT LCD

The signals in TFT, i.e. SCLK, MOSI, CS, RESET connects to the pins in 8266, i.e.
SD_CLK, SD_DATA1, UOTXD, GPIO5 respectively. The VCC in OLED and GND connects
to 3.3V network and GND on DEMO board.

5.4.2. API Function Description

1. void screen_init(void)

Function:

Display screen initialization program. Call the function after it is enabled.
Location:

\app\usen\user_lcd.c and \app\include\user_Icd.h

Espressif 48/104 2017.05

D)

Espressif

5. SPI Overlap & Display Application Guide

2. void scr_param_config(uint8 bkg color,uint8 ft color,uint8
ft size, uint8 scr_size clr_row, uint8 scr_size x,uint8
scr_size_y)

Function:

Display parameter for the global variable configuration string of the scr_font_param
structure.

Parameters:

Parameter Description

Background color of TFT can change between BLACK_8COLOR and

uint8 bkg_color WHITE_8COLOR. Do not use OLED display screen.

Font color of TFT can change between BLACK_8COLOR and

uint8 ft_color WHITE_8COLOR. Do not use OLED display screen.

Font size with 12*6 ASCII character. The parameter is the multiple of pixels
uint8 ft_size under the character.

For example, if ft_size is 2, the actual font size is 24*12. Input non-zero value.
uint8 scr_size_clr_row Rows should be removed after the screen is refreshed.Input non-zero value.

Each line shows the character number.Please note that it should not exceed

uint8 scr_size_x the pixel range of the screen.

This parameter shows the character lines. Please note that it should not

uint8 scr_size_y exceed the pixel range of the screen.

Location:

\app\user\user_lcd.c and \app\include\user_Icd.h, call in the function screen_init.
3. void scr_printf(const char* fmt, ...)

Function:

used for standard printing of functions displayed on the screen, similar to the using method
of printf in C programming language.

Parameters:

e const char* fmt—— shows the character string.

* ...—— variable parameters that needs to be displayed in the corresponding string.
Location:

\app\user\user_Icd.c and \app\include\user _Icd.h
4. void at_lcd_print(uint8* str)
Function:
shows the assigned character string displayed on the screen order.
Parameters:

uint8* str—— the starting address of string array.

49/104 2017.05

5. SPI Overlap & Display Application Guide

5.4.3. Pre-compiled Macro Setting

#define OLED_SCR 1
#define TFT_SCR 1
#define OVERLAP_TEST 0

Espressif

Location:
\app\include\user _Icd.h

OLED_SCR and TFT_SCR can control the debugging characters displayed on the
corresponding screen. The program supports the same character shown in two screens.
Overlap_TEST is used for SPI Overlap test when TFT is used to display image. TFT should
be set at O as it conflicts with the displayed characters.

50/104 2017.05

6. SPI Wi-Fi Passthrough 1-Interrupt Mode

SPI Wi-Fi Passthrough 1-
Interrupt Mode

6.2.
6.2.1.

6.2.2.

Espressif

Functional Overview

This protocol uses the ESP8266 slave mode to communicate with other processor's SPI
master. Signal line No.5 is used to implement this protocol. Apart from signal line No.4
needed for standard SPI, signal line No.1 is also needed to inform the master of the update
of the slave status register.

ESP8266 SPI Slave Protocol Format
SPI Slave Clock Polarity Configuration

Clock polarity of the master clock which communicates with the ESP8266 SPI slave should
be set to be low in the idle state, sampling for rising edge, and changing data for falling
edge. When it reads/writes 34 bytes at a time, or when it reads 2 bytes at a time to get
information of the slave status register, selection signal CS must be kept at low level. If CS
is pulled high when data is being sent, the slave interior status will be reset.

Communication Format Supported by The SPI Slave

The ESP8266 SPI slave communication format should be command+address+read/write
data or command+slave status value. To be specific:

e Command: length, 8 bits; master output slave input (MOSI).

0x02 is the data sent by the master and received by the slave. The master writes 32 bytes
of data through MOSI into SPI_W?7 in corresponding register SPI_WO0 of the slave data
buffer.

0x03 is the data received by the master and sent by the slave. 32 bytes of data from
corresponding register of the slave buffer between SPI_FLASH_C8 and SPI_FLASH_C15
are sent to the master through MISO.

0x04 and 0x05 can read the lower 8 bits of SPI_FLASH_STATUS in the slave status
register.

! Notice:

Other values are used to read/write the SPI slave status register SPI_FLASH_STATUS. Their communication
formats are different from those of the read/write buffer, using them will cause read/write errors for the slave.
So users should not use these values.

e address: length, 8 bits; master output slave input (MOSI). The address content must
be 0.

51/104 2017.05

@ 6. SPI Wi-Fi Passthrough 1-Interrupt Mode

e read/write data: length, 256 bits (32 Bytes). Master output slave input (MOSI) the
0x02 command, or master input slave output (MISO) the 0x03 command.

¢ slave status: length, 8 bits; master input slave output (MISO), use 0x04 or 0x05 to
read the slave communication status.

6.3. Slave Status Definition and Line Breakage

6.3.1. Status Definition
The slave status contains 8 bits:

e wr_busy, bitO: 1, slave write buffer is full, and is processing the data received; O,
slave write buffer is empty, new data can be written in.

e rd_empty, bit1: 1, slave read buffer is empty, no data has been updated; O, there is
new data in the buffer for the master to read.

e comm_cnt, bit2-4: count value of the read/write communication. Each time when
the slave SPI read/write buffer is interrupted, this 3-bit count value will increase by 1.
Therefore, the master can judge whether the readwrite communication has been
recognised by the slave, and whether the communication is completed.

! Notice:

When the master completed a read/write communication, if it wants to conduct the next read operation,
rd_empty must be 0, and comm_cnt value must be the previous value +1; if it wants to conduct the next
write operation, wr_busy must be 0, and comm_cnt value must be the previous value +1.

6.3.2. GPIOO Line Breakage

When there are changes in the slave status register, interrupt line GPIOO will be set to be 1;
when the master uses 0x04, 0x05 to read the slave status register, interrupt line GPIOO will
be set 0.

6.4. ESP8266 SPI Slave API Functions

! Notice:
Configure in spi.h if SPI status register single-threaded passthrough protocol is used.

//SPI protocol selection

#define TWO_INTR_LINE_PROTOCOL 0
#define ONE_INTR_LINE_31BYTES 0
#define ONE_INTR_LINE_WITH_STATUS 1

The interrupt response function will use spi_slave_isr_sta(void *para).

Espressif 52/104 2017.05

D)

6. SPI Wi-Fi Passthrough 1-Interrupt Mode

1. void spi_slave_init(uint8 spi_no)
Function:

Initialise the SPI slave mode, set the |O interface to SPI mode, start the SPI transmission
interrupt, and register spi_slave_isr_handler. The communication format is set to be 8 bits
command + 8 bits address + 256 bits (32 Bytes) read/write data.

Parameters:

spi_no: number of the SPI module. The ESP8266 processor has two SPI modules (SPI
and HSPI) with the same functions.

Value to be selected: SPI or HSPI.
2. spi_slave_isr_sta(void *para)
Function and trigger condition:

It's the SPI interrupt handler function. When the master successfully reads data from or
writes data into the slave, the interrupt will be triggered. Users can revise the interrupt
service routine in order to attain the communication functions they need. The code is
shown as below:

struct spi_slave_status_element

{
uint8 wr_busy:1;
uint8 rd_empty :1;
uint8 comm_cnt :3;
uint8 res :3;

I

union spi_slave status

{
struct spi_slave_status_element elm_value;
uint8 byte value;

b

void spi_slave_isr_sta(void *para)

{

uint32 regvalue,calvalue;
uint32 recv_data,send_data;

union spi_slave_status spi_sta;

if (READ_PERI_REG(Ox3ff00020)&BIT4) {

//following 3 lines is to clear isr signal

Espressif

53/104 2017.05

6. SPI Wi-Fi Passthrough 1-Interrupt Mode

CLEAR_PERI_REG_MASK(SPI_SLAVE(SPI), Ox3ff);

telse if(READ_PERI_REG(Ox3ff00020)&BIT7){ //bit7 is for hspi
isr,

// record the interrupt status
regvalue=READ_PERI REG(SPI_SLAVE (HSPI));

//***xx*xxxxxxinterrupt handler flag, end this
passthrough***x*xxxx*xxx//

CLEAR_PERI_REG_MASK(SPI_SLAVE (HSPI),
SPI_TRANS_DONE_EN |

SPI_SLV_WR_STA_DONE_EN|

SPI_SLV_RD_STA_DONE_EN|

SPI_SLV_WR_BUF_DONE_EN|

SPI_SLV_RD_BUF_DONE_EN) ;
SET_PERI_REG_MASK(SPI_SLAVE(HSPI), SPI_SYNC_RESET):
CLEAR_PERI_REG_MASK(SPI_SLAVE (HSPI),

SPI_TRANS_DONE |

SPI_SLV_WR_STA_DONE |
SPI_SLV_RD_STA_DONE |
SPI_SLV_WR_BUF_DONE |

SPI_SLV_RD_BUF_DONE) ;

SET_PERI_REG_MASK(SPI_SLAVE (HSPI),
SPI_TRANS_DONE_EN|

SPI_SLV_WR_STA_DONE_EN|

SPI_SLV_RD_STA_DONE_EN|

SPI_SLV_WR_BUF_DONE_EN|

SPI_SLV_RD_BUF_DONE_EN) ;
/7

[RFFRAEA R H xR X ¥ master writes interrupt
handler***************/

Espressif

54/104

2017.05

6. SPI Wi-Fi Passthrough 1-Interrupt Mode

if(regvalue&SPI_SLV_WR_BUF_DONE) {

//***x*complete the write operation, wr_busy set to be
1, communication count increases by 1****//

spi_sta.byte_value=READ_PERI_REG(SPI_STATUS(HSPI))&0Oxff;
spi_sta.elm _value.wr_busy=1;
spi_sta.elm_value.comm_cnt++;

WRITE_PERI_REG(SPI_STATUS (HSPI),
(uint32)spi_sta.byte_value);

[/ **x*x****move the data received by the register
into the memory****x*//

idx=0;
while(idx<8){

recv_data=READ_PERI_REG(SPI_WO(HSPI)+
(1dx<<2));

//os_printf("rcv data : Ox%X
\n\r",recv_data);

spi_data[idx<<2] = recv_data&Oxff;

spi_datal[(idx<<2)+1]
(recv_data>>8)&0Oxff;

spi_datal[(idx<<2)+2]
(recv_data>>16)&0Oxff;

spi_datal (idx<<2)+3]
(recv_data>>24)&0xff;

idx++;
}

//***********************************//

[/ F¥FFF*FEXEFXXKJata transmission completed, wr_busy

spi_sta.byte value=READ PERI REG(SPI_STATUS(HSPI))&Oxff;
spi_sta.elm_value.wr_busy=0;

WRITE_PERI_REG(SPI_STATUS(HSPI),
(uint32)spi_sta.byte_value);

//

/***testing part, it can be revised. This part of
the program is used to copy the data read to the read buffer**/

Espressif

55/104 2017.05

6. SPI Wi-Fi Passthrough 1-Interrupt Mode

for (idx=0;1dx<8;idx++)

{
WRITE_PERI_REG(SPI_W8 (HSPI)+(idx<<2),

READ_PERI_REG(SPI_WO (HSPI)+(idx<<2)));

}
/

**/

/***testing part, it can be revised. rd_empty is
set to be 0, the slave can read**/

spi_sta.byte value=READ_PERI_REG(SPI_STATUS(HSPI))&Oxff;
spi_sta.elm_value.rd empty=0;

WRITE PERI _REG(SPI_STATUS(HSPI),
(uint32)spi_sta.byte_value);

/**/

GPIO_OUTPUT_SET(O, 1); // interrupt line set to be

1, inform the master to read the slave status

[RFFFEIFEEAAX KKK *Master reads the interrupt
handler***************/

yelse if(regvalue&SPI_SLV_RD_BUF_DONE){

//*¥****complete the read operation, rd_empty set
be 1, communication count increases by 1****//

spi_sta.byte_value=READ_PERI_REG(SPI_STATUS(HSPI))&0Oxff;
spi_sta.elm_value.comm_cnt++;
spi_sta.elm _value.rd empty=1;

WRITE_PERI_REG(SPI_STATUS (HSPI),
(uint32)spi_sta.byte value);

to

GPIO_OUTPUT_SET(O, 1); // interrupt line set to be

1, inform the master to read the slave status

}

[RFRFFEXFEX XK XXX XX master reads status interrupt
handler***************/

if(regvalue&SPI_SLV_RD_STA_DONE){

GPIO _OUTPUT_SET(0,0); // interrupt line set to be

0, the master has read the status

}

Espressif

56/104

2017.05

@ 6. SPI Wi-Fi Passthrough 1-Interrupt Mode

telse if(READ_PERI_REG(Ox3ff00020)&BIT9){ //bit7 is for i2s isr,

Espressif 57/104 2017.05

7. SPI' Wi-Fi Passthrough 2-Interrupt Mode

SPI Wi-Fi Passthrough 2-
Interrupt Mode

7.2.
7.2.1.

7.2.2.

Espressif

Functional Overview

This protocol uses the ESP8266 slave mode to communicate with other processor's SPI
masters. Signal line No.6 is used to implement this protocol. Apart from signal line No.4
needed for standard SPI, signal line No.2 is also needed to inform the master of information
of the slave receive and send buffer status, so as to control the data flow.

ESP8266 SPI Slave Protocol Format
SPI Slave Clock Polarity Configuration

Clock polarity of the master clock which communicates with the ESP8266 SPI slave should
be set to be low in the idle state, sampling for rising edge, and changing data for falling
edge. When it reads/writes 34 Bytes at a time, selection signal CS must be kept at low
level. If CS is pulled high when data is being sent, the slave interior status will be reset.

Communication Format Supported by The SPI Slave

The ESP8266 SPI slave communication format is similar to that of the master, it should be
command + address+ read/write data. To be specific:

e command: length, 8 bits; master output slave input (MOSI).

0x02 is the data sent by the master and received by the slave. The host writes 32 Bytes of
data through MOSI into SPI_WO0 to SPI_W?7 in the corresponding register of the slave data
buffer.

0x03 is the data received by the master and sent by the slave. 32 Bytes of data from
corresponding register of the slave buffer between SPI_W8 and SPI_W15 are sent to the
master through MISO.

! Note:

other values are used to read/write the SPI slave status register SPI_STATUS. Their communication formats
are different from those of the read/write buffer, using them will cause read/write errors for the slave. So users
should not use these values.

e address: length, 8 bits; master output slave input (MOSI). The address content must
be 0.

e read/write data: length, 256 bits (32 Bytes). Master output slave input (MOSI) the
0x02 command, or master input slave output (MISO) the 0x03 command.

58/104 2017.05

@ 7. SPI' Wi-Fi Passthrough 2-Interrupt Mode

7.3. Instruction on The Data Flow Control Line

The ESP8266 uses 2 GPIOs to output the slave receive buffer status and send buffer
status.

7.3.1. GPIO0 MOSI Buffer Status

When GPIOO enters the slave receive interrupt, the interrupt program will resume the SPI
slave to communicable status in order to prepare for the next communication. Then, GPIOO
will be written to be low level, data received will be processed, and GPIOO will be written to
be high level to exit the interrupt program. Therefore:

¢ Between the master enables an SPI write communication to GPIOO generates a
falling edge, if users enable any other SPIs, communication errors will occur.

¢ When GPIOO is at low level, if the master enables any SPI to write (0x02 command),
SPI_WO to SPI_W?7 in the slave receive register will be covered. But if there is
effective data in the slave send register (refer to GPIO2 instructions), when GPIOO is
at low level, master can be started to read (0x03 command) data between SPI_W8 to
SPI_W15 in the slave send register.

¢ |f GPIOO shifts from low level to high level, it means the slave has processed data
from SPI_WO to SPI_W?7 in the receive register, and the master can start another
write operation (0x02 command).

7.3.2. GPIO2 Master Receives The Slave Send Buffer Status

GPIO2 activities are slightly different from those of GPIOO0. In the slave send interrupt, the
interrupt program will resume the SPI slave to communicable status in order to prepare for
the next communication. Then, GPIOO0 will be written to be low level, and quit the interrupt
program. After that, if data is sent to the ESP8266 through WiFi and is required to be
forwarded by SPI, ESP8266 software will be written into SPI_W8 to SPI_W15, and GPIO2

will be set to be high level. Therefore:
e Between the master enables an SPI read communication to GPIO2 generates a
falling edge, if users enable any other SPIs, communication errors will occur.

e When GPIO2 is at low level, if the master enables any SPI to read (0x03 command), it
can only read data the same as the previous data, or incomplete data. But if data in
the slave receive register has been processed (refer to GPIO2 instructions), when
GPIO2 is at low level, master can be started to write (0x02 command).

o [f GPIO2 shifts from low level to high level, it means the slave has updated data from
SPI_WS8 to SPI_W15 in the send register, and the master can start the another read
operation (0x03 command).

7.3.3. Master Communication Logic Implementation

Incomplete C code is used to briefly introduce the communication logic:

Espressif 59/104 2017.05

@ 7. SPI' Wi-Fi Passthrough 2-Interrupt Mode

//wr_rdy: ready to conduct the next SPI write operation
//rd_rdy: ready to conduct the next SPI read operation
unsigned char wr_rdy=1,rd_rdy=0;

void spi_read_func(....)

{

// before starting the read operation, check if there is new
data for the slave to read (rd_rdy is non-0);

// also, check if the previous write operation is completed;
write operationcompleted and processing data (signal GPIOO is
0), or new data can be written into the slave (wr_rdy is non-0)

if(rd_rdy&&((GPI00= =0) | |wr_rdy)){
rd_rdy=0; //rd_rdy set to be 0

spi_transmit(0x03,0,*read_buff);// start the SPI transmission,
command 3 + address 0 + 32 bytes of data

}
void spi_write func(...)
{

// before starting the write operation, check if there is new
data for the slave to receive (rd_rdy is non-0);

// also, check if the previous read operation is completed;
completed, no new data to be read (signal GPIO2 is 0), or new
data to be read (rd_rdy 1is non-0)

if(wr_rdy&&((GPI02= =0)||rd_rdy)){
wr_rdy=0; //wr_rdy set to be 0

spi_transmit(0x02,0,*write buff);// start the SPI transmission,
command 2 + address 0 + 32 bytes of data

GPIOO_Raising_Edge ISR() // rising edge interrupt program connected
to the ESP8266 GPIOO

{

wr_rdy=1; // data sent by the master has been processed,
ready for the next write operation

Espressif 60/104 2017.05

@ 7. SPI' Wi-Fi Passthrough 2-Interrupt Mode

GPIO2_Raising_Edge ISR() // rising edge interrupt program connected
to the ESP8266 GPIO2

{

rd_rdy=1; // the slave updates the send buffer, the master is
ready to read

7.4. ESP8266 SPI Slave API Functions

1. void spi_slave_init(uint8 spi_no)
Function:

Initialise the SPI slave mode, set the IO interface to SPI mode, start the SPI transmission
interrupt, and register spi_slave_isr_handler. The communication format is set to be 8 bits
command + 8 bits address + 256 bits (32 Bytes) read/write data.

Parameters:

spi_no: number of the SPI module. The ESP8266 processor has two SPI modules (SPI
and HSPI) with the same functions.

value to be selected: SPI or HSPI.
2. spi_slave_isr_handler(void *para)
Function and trigger condition:

It is the SPI interrupt handler function. When the master successfully reads data from or
writes data into the slave, the interrupt will be triggered. Users can revise the interrupt
service routine in order to complete the communication. The code is shown below.

Code:

uint32 regvalue;
static uint32 tl1 =0;
static uint32 t2 =0;

tl=system_get time();

if (READ_PERI_REG(Ox3ff00020)&BIT4) { //bitd: SPI interrupt
CLEAR_PERI_REG_MASK(SPI_SLAVE(SPI), Ox3ff);

}else if(READ_PERI_REG(Ox3ff00020)&BIT7){ //bit7: HSPI
interrupt,

regvalue=READ PERI REG(SPI_ SLAVE(HSPI)); // record the
interrupt type

// turn off the SPI interrupt enable

Espressif 61/104 2017.05

@ 7. SPI' Wi-Fi Passthrough 2-Interrupt Mode

CLEAR_PERI_REG_MASK(SPI_SLAVE (HSPI),
SPI_TRANS_DONE_EN|
SPI_SLV_WR_STA_DONE_EN|
SPI_SLV_RD_STA_DONE_EN|
SPI_SLV_WR_BUF_DONE_EN|
SPI_SLV_RD_BUF_DONE_EN);

// resume the SPI slave to communicable status, in order
to prepare for the next communication

SET_PERI_REG_MASK(SPI_SLAVE (HSPI), SPI_SYNC_RESET);
// clear the interrupt flag
CLEAR_PERI_REG_MASK(SPI_SLAVE (HSPI),
SPI_TRANS_DONE |
SPI_SLV_WR_STA_DONE |
SPI_SLV_RD_STA_DONE |
SPI_SLV_WR_BUF_DONE |
SPI_SLV_RD_BUF_DONE);
// turn on the SPI interrupt enable
SET_PERI_REG_MASK(SPI_SLAVE (HSPI),
SPI_TRANS_DONE_EN|
SPI_SLV_WR_STA_DONE_EN|
SPI_SLV_RD_STA_DONE_EN|
SPI_SLV_WR_BUF_DONE_EN|
SPI_SLV_RD_BUF_DONE_EN);
//MISO processing program
if(regvalue&SPI_SLV_WR_BUF_DONE) {
GPIO_OUTPUT_SET(O, 0); //GPI00O set to be O
idx=0;
//read the data received
while(idx<8){
recv_data=READ_PERI_REG(SPI_WO(HSPI)+4*idx);
//os_printf("rcv data : Ox%x \n\r",recv_data);
spi_data[4*idx+0] = recv_data&Oxff;
(recv_data>>8)&0Oxff;

spi_data[4*idx+1]

spi_data[4*idx+2] (recv_data>>16)&0Oxff;

(recv_data>>24)&0xff;

spi_data[4*idx+3]

Espressif 62/104 2017.05

@ 7. SPI' Wi-Fi Passthrough 2-Interrupt Mode

idx++;
}

system_os_post(USER_TASK PRIO_1,MOSI,0);// send the
reception completed message

GPIO _OUTPUT_SET(O, 1); //GPI0O
set to be 1

SET_PERI_REG_MASK(SPI_SLAVE (HSPI),
SPI_SLV_WR_BUF_DONE_EN);

//master reads, slave sends the processing program
if(regvalue&SPI_SLV_RD_BUF_DONE) {
GPIO_OUTPUT_SET(2, 0); //GPI02 set to be 0O

}
telse if(READ_PERI_REG(Ox3ff00020)&BIT9){ //bit7: I2S interrupt

Espressif 63/104 2017.05

<

8.

8. HSPI Host Multi-device API

HSPI Host Multi-device API

8.1.

Functional Overview

ESP8266 encapsulates two SPI (Serial Peripheral Interfaces) bus segments, shortly named
SPI and HSPI. SPI bus is especially used to read CPU programming code from the external
Flash, while HSPI bus is used for SPI device communication.

When ESP8266 is working as a host, HSPI bus can operate with three user devices,
besides, it also supports one external Flash writing operation. User devices are supported
through selection with CS lines. To be more specific,

Mode Device Name
HSPI Default 10 User device 1
SPI OVERLAP and CS1 User device 2
SPI OVERLAP and CS2 User device 3
SPI OVERLAP and CSO Flash

In the above-mentioned ways of connection, SPI bus shares the same external Flash with
HSPI bus. Apart from the memory occupied by programs and related configurations, the
rest Flash memory can all be used for reading and writing of user programs.

I Notice:

* QOperation with devices via HSPI host implemented by software programming is not supported in the
APl functions.

e When downloading user programs, the clock frequency of SPI bus used for reading Flash data should
be set at 80 MHz. SPI clock frequency should be specified as 80 MHz at SPI OVERLAP and CS1
mode or SPI OVERLAP and CS2 mode.

8.2. Hardware Connection

Espressif

Generally speaking, SPI slave devices specify four logic signals: SCLK, MOSI, MISO, and
Cs.

HSPI bus can operate with three different user devices, the ways of connection are
explained below:

Mode Pin Name of Host ESP8266 SPI bus Signal Line
MTDO CS
MTCK MOSI
HSPI Default 1O
MTDI MISO
64/104 2017.05

Mode Pin Name of Host ESP8266

Mo peldult 1V

MTDI

MTMS

UOTXD

SD_CLK
SPI OVERLAP and CS1

SD_DATAO

SD_DATA1

GPIOO

SD_CLK
SPI OVERLAP and CS2

SD_DATAO

SD_DATA1

LLI Note:

8. HSPI Host Multi-device API

MISO

CLK

CS1

SCLK

MISO

MOSI

CS2

SCLK

MISO

MOSI

SPI bus Signal Line

The pins used when HSPI operates with the Flash in OVERLAP mode is completely the same with that of SPI

communication.

8.3. API Description

Names of the connection modes supported by the system are defined by macro definitions

in \app\include \driver\spi_overlap.h.
e HSPI_CS_DEV (HSPI default 10)

e SPI_CS1_DEV (SPI OVERLAP and CS1)
e SPI_CS2_DEV (SPI OVERLAP and CS2)

Operation with the Flash is defined as SPI_CSO_FLASH. If HSPI operates with two user

devices, the API function is shown as below:

void hspi_master_dev_init(uint8 dev_no,uint8 clk polar,uint8 clk _div)

Espressif

This function is used to initialize connection of HSPI host. Altogether four user devices can be
Function operated. If multi devices communicate with the host using SPI communication mode, the
function should be called each time when that certain device is operated.

el \spi_overlap.c.

65/104

Defined in directory \app\include\driver\spi_overlap.h, implemented in directory \app\driver

2017.05

Parameters

! Notice:

8. HSPI Host Multi-device API

uint8 dev_no: only HSPI_CS_DEV, SPI_CS1_DEV, SPI_CS2_DEV, and SPI_CSO_FLASH
are supported, the corresponding values of these four parameters are O, 1, 2, and 3
respectively. If the parameter should be other values, ERROR will be printed and the
function will be returned.

uint8 clk_polar: clock polarity.

- If the clock polarity is O, data are captured on the clock’s rising edge, and are
propagated on a falling edge.

- Ifthe clock polarity is 1, data are captured on the clock’s falling edge, and are
propagated on a rising edge.

- If the clock polarity should be other values, ERROR will be printed and the function will
be returned.

uint8 clk_div: clock frequency division. 40 MHz is reference frequency, the number of

division is clk_div+1. To be more specific, O stands for reference frequency, 1 stands for 20

MHz, while 2 stands for 40/3 MHz, and so forth.

ONLY when the clock frequency of SPI bus used for reading Flash data is set at 80 MHz. If the device is
defined by SPI_CS1_DEV and SPI_CS2_DEV via SPI OVERLAR, the clock frequency of host SPI is
unadjustable, and should be 80 MHz.

void hspi_dev_sel(uint8 dev_no)

Espressif

Function

Location

Parameters

Convert and select host communication devices.

Defined in directory \app\include\driver\spi_overlap.h, implemented in directory
\app\driver\spi_overlap.c.

uint8 dev_no: only HSPI_CS_DEV, SPI_CS1_DEV, SPI_CS2_DEV, and SPI_CSO_FLASH
are supported, the corresponding values of these four parameters are O, 1, 2, and 3
respectively. If the device has not been initialized, ERROR will be printed and the function will
be returned. If it the parameter should be other values, ERROR will be printed and the
function will be returned.

66/104 2017.05

9. 12C User Guide

12C User Guide

© &

9.1. Functional Overview

ESP8266EX now has interfaces for 12C master devices, and allows control and reading and
writing over other 12C slave devices (e.g. most digital sensors).

All GPIO pins can be configured with open-drain mode, thus easily enabling GPIO interface
for 12C data or clock functionalities.

Besides that, the chip has pull-up resistance inside which can help save the pull-up
resistance outside.

As an 12C master, ESP8266EX has its waveforms of the SDA and SCL lines simulated from
SPIO, where SDA access is behind the positive edge of SCL. SCL high and low levels will
maintain 5us and thus 12C clock pulse will be around 100KHz.

9.2. 12C master Interface

9.2.1. Initialization
i2c_master_gpio_init: GPIO hardware initialization.
Steps are as follows:

1. Select pin functionality and set as GPIO
2. Set the GPIO into open-drain mode

3. Initialize SDA and SCL as high levels

4. Disconnect GPIO and reset slave state

i2c_master_init(void): Reset slave state

9.2.2. Startl2C

i2c_master_start(void): master generates I12C start conditions.

START condition

Espressif 67/104 2017.05

9.2.3. Stop I2C

i2c_master_stop(void): master generates 12C stop conditions.

r——™"

| -

| / : SDA
| |

| | __
1 scL
| P

STOP condition

9.2.4. 12C Master Responds ACK

i2c_master_send_ack(void): sets I2C master to respond ACK.

N/

acknowledge/

WA A

clock pulse for
acknowledgement

9.2.5. 12C Master Responds NACK

I2C_master_send_nack(void): sets I2C master to respond NACK.

not acknowledge
9%

WAL WA .

clock pulse for
acknowledgement

Espressif 68/104

9. 12C User Guide

2017.05

9.2.6. Check I2C Slave Response

bool i2c_master checkAck(void): check slave response state.

Return value:

e TRUE: "acknowledge" from slave
e FALSE: "not acknowledge" from slave

Details shown below:

not acknowledge\

7/

A

acknowledge

clock pulse for
acknowledgement

9.2.7. Write Data on 12C Bus

i2c_master _writeByte(uint8 wrdata): write data on 12C bus

Parameters:

1 Byte of data

Ll Note:

Data at the highest place will be sent first and that at the lowest place sent last.

Either slave address or data can be sent.

9.2.8. Read Data from 12C Bus

i2c_master_readByte (void):read abyte from SPI slave.
Return value:

Read 1 Byte of data.

9.3. Demo

Please refer to IOT_Demo provided by esp_iot_sdk, for example:

Espressif 69/104

9. 12C User Guide

2017.05

@ 9. 12C User Guide

void ICACHE_FLASHTA?rR
user_mvh3004_init vciq)
{

}

i2c_master_gpio_init();

LOCAL bool ICACHE FLASH ATTR
user_mvh3004_burst_read (uincz addr, uints “pData, uintlé len)
{

uint8 ack;
uintleée i;

i2c_master_ start();
i2c_master writeByte(addr);
ack = i2c master_checkAck();

iFE (Yack) {
os_printf("addr not ack when tx write cmd \n");
i2c _master stop();
return false;

}

i2c_master_stop();
i2c_master_wait (40000);

i2c _master_ start();
i2c _master writeByte(addr + 1);
ack = i2c_master checkAck();

if (lack) {
os_printf("addr not ack when tx write cmd \n");
i2c_master_ stop();
return false;

for (i = 0; i < len; i++) {

pData[i] = i2c_master_ readByte();

if (i = (len - 1))
i2c_master send nack();

else

i2c_master_send ack();

}
i2c_master_stop();

return true;
} ? end user_mvh3004_burst_read ?

Espressif 70/104 2017.05

10. 12S Module Description
10. 12S Module Description

10.1. Functional Overview

The 12S module of the ESP8266 contains a Tx (transport) unit and a Rx (receive) unit. Both
the Tx and the Rx unit have a three-wire interface that includes:

e (Clock line;
¢ Data line;
e Channel selection line (the line for selecting the left or the right channel).

LI Note:
The clock and data output will stop when O is written into the data line.

The transmission direction of the 12S module is shown in Table 10-1.

Table 10-1. Transmission Direction of The I12S Module

Tx unit Rx unit
Clock line output / input output / input
Data line output input
Channel selection line output input

Ll Note:

Both the Tx and Rx unit have a separate FIFO, which has a depth of 128 and a width of 32 bits, and can be
visited by software directly. You can also make an automatic DMA operation to FIFO by the SLC module.

10.2. System Configuration

10.2.1. 12S Module Configuration

10.2.1.1.12S Module Reset

Bits O ~ 3 in the I2SCONF register provide the software reset feature to the 12S. Write 1 and
then O to complete the reset operation. Different bits are used for:

* Bit 0: 12S_TX_RESET
e Bit 1: 125_RX_RESET
o Bit 2: 12S_TX_FIFO_RESET
e Bit 3: 125_RX_FIFO_RESET

Espressif 71/104 2017.05

@ 10. 12S Module Description

10.2.1.2.12S Module Start
Provide a running clock

To start the 12S module to transport or receive data, firstly you need to provide a running
clock for the 12S by invoking the system function below:

i2c_writeReg_ Mask def (i2c_bbpll, i2c_bbpll_en_audio _clock out, 1)

Start the Tx module
Bit 8 in the I2SCONF register is used to start the Tx module.
* In the master Tx mode, when bit 8 is 1, the Tx mode will output the clock signal, the

left and right channel signals and data. The first frame data is O, and then the FIFO
data will be shifted out.

- If no data is written into the the FIFO, the data line will remain O.

- If the FIFO has transported all the written data and no new data is written in the
FIFO, the data line will loop the last data in the FIFO.

¢ |n the slave passive Tx mode, the Tx module will be started when it receives a clock
signal from the Rx module.

Start the Rx module

Bit 9 in the I2SCONF register is used to start the Rx module. In the master receive mode:
* When bit 9is 1, the Rx mode will output the clock signal, and sample the data line

and the channel selection line.
e When bit 9is 0, it will stop the clock signal transport.
e In the slave receive mode, it is prepared to receive any data from the master.
10.2.1.3.Tx/Rx FIFO Mode
FIFO access mode
Bit 12 of 12S_FIFO_CONF defines the access mode of the FIFO.

e When bit 12 is 1, the SLC will make a DMA operation to the FIFO. Direct access to
the FIFO will be invalid.

e When bit 12 is O, the FIFO can be accessed directly by software.

e The default value of bit12 is 1.
Tx FIFO mode
Bits 13 ~ 15 of I2S_FIFO_CONF are used to control the transport data format for
i2s_tx_fifo_mod.

Value Description

16bits_per_channel full data (dual channel, FIFO data organisation, 16 bits data in the left
channel,16 bits data in the right channel, and 16 bits data in the left channel)

Espressif 72/104 2017.05

10. 12S Module Description

16bits_per_channel half data (single channel, FIFO data organisation, 16 bits data, 16 bits
invalid , 16 bits data)

24bits_per_channel full data discontinue (dual channel, FIFO data organisation, 24 bits data in

2 the left channel, 8 bits invalid, 24 bits data in the right channel, 8 bits empty)
3 24bits_per_channel half data discontinue (single channel, FIFO data organisation, 24 bits data,
8 bits invalid, 24 bits data, 8 bits empty)
4 24bits_per_channel full data continue (left and right channels, FIFO data organisation, 24 bits
data in the left channel, 24 bits data in the right channel)
5 24bits_per_channel half data continue (single channel, FIFO data organisation, 24 bits data, 24
bits data)
6~7 Invalid
RX FIFO mode

Bits 16~18 of I2S_FIFO_CONF is used to control the receive data format for
i2s_rx_fifo_mod.

0 16bits_per_channel full data

1 16bits_per_channel half data

2 24bits_per_channel full data discontinue
3 24bits_per_channel half data discontinue
4~7 Invalid

10.2.1.4.Channel Mode

Espressif

Tx channel mode
Bits O ~ 2 in the I2SCONF_CHAN are used for the Tx channel mode (tx_chan_mod).

0 Dual-channel

1 Right channel (left and right audio channels are used to put the data of the right channel)
2 Left channel (left and right audio channels are used to put the data of the left channel)

3 Right channel (put a constant from regfile in the left channel)

4 Left channel (put a constant from redfile in the right channel)

Rx channel mode
Bits 3~4 in the I2SCONF_CHAN are used for the Rx channel mode (rx_chan_mod).

73/104 2017.05

@ 10. 12S Module Description

Value Description
0 Dual-channel
1 Right channel
2 Left channel

10.2.1.5.Clock Mode
in the I2SCONF:
e Bits16 ~ 21 are the prescaler of the input clock (12S_CLKM_DIV_NUM).
e Bits 22 ~ 27 are the frequency divider of the communication clock signal
(12S_BCK_DIV_NUM).
10.2.1.6.0ther Configurations

Register I2SRXEOF_NUM sets the number of data to be received when the Rx FIFO
triggers the SLC transport (unit: 4 bytes).

See the definitions of i2s_reg.h in DEMO. Other instructions will be updated.

10.2.2. Link List Configuration

In the ESP8266, the DMA transfers the receive and transport packets in the SDIO to the
corresponding memory. The software will define the structure (or group) of the registration
list and cache space(s).

As shown in Figure 10-1, there is only one cache space and one registration list. Write the
first address of the cache and other information to the registration list, and then write the
first address of the registration list to the hardware register of the ESP8266. Therefore, the
DMA will automatically operate the SDIO and the cache space.

word 0 owner eof sub_sof 5b0 length [11:0] size [11:0]
word 1 buf_ptr [31:0]
word 2 next_link_ptr [31:0]

Figure 10-1. Registration List
Field name Description
1’b0 Software operates the buffer of the current link. The MAC shouldn't use this bit.

owner
1'b1 Hardware operates the buffer of the current link.

Espressif 74/104 2017.05

@ 10. 12S Module Description

Field name Description

Flag of frame end (for the end of AMPDU sub-frame, the mark isn't needed).

> When the MAC transports the frames, it's used in the end of the frame. For
the link in the position of eof, the buffer_length[11:0] should be equal to the

eof
length of the remaining frame; otherwise, the mac will report an error.
> When the MAC receives the frames, it's used to indicate that the frame has
been received completely and the value is set by hardware.
b sof Flag of sub-frame start. It's used to differentiate different sub-frames in the
SUb_SO AMPDU. It's only for MAC transport.
length[11:0] The actual size of the buffer.
size[11:0] The total size of the buffer.
buf_ptr[31:0] The start address of the buffer.

The start address of the next descripter. When the MAC is receiving the flame, the

next_link_ptrf31:0] value is “0”, indicating that there is no empty buffer to receive any flames.

10.2.3. SLC Module Configuration

10.2.3.1.Basic Configuration
The SLC module provides the ESP8266 with DMA service of several modules.

Follow the instructions below so that the SLC module is used for the FIFO transmission of
12S.

e Set Bits 12~13 (SLC_MODE) of the SLC_CONFO to 01.

e Set Bit 17 (SLC_INFOR_NO_REPLACE) and Bit 16 (SLC_TOKEN_NO_REPLACE) of
the SLC_RX_DSCR_CONF to 01.

10.2.3.2.Write The First Address

Bits 0~19 of SLC_RX_LINK (SLC_TX_LINK) register are the first 20 bits of the Rx (Tx)
registration list address. The first address of the registration list should be written to be the
register before the SLC hardware is started.

10.2.3.3.Start The SLC Transmission

Bit 29 of SLC_RX_LINK (SLC_TX_LINK) register is the control bit for starting the SLC
transmission. In the cache space, register a link list and write the first 20 bits of the link
table address to the hardware, and then set bit 29 to 1 to start the SLC transmission.

10.3. API Function Description

The following functions can be found in:

/app/driver/i2s.c and /app/include/driver/i2s.h

Espressif 75/104 2017.05

10. 12S Module Description

10.3.1. Void Function

Function

Feature

Parameter

Function

Feature

Parameter

Function

Feature

Parameter

Function

Feature

Parameter

void i2s_test

void i2s_test(void)

12S Programs for read and write testing of the module. It is the core function of the DEMO, which can be
used to test the transporting and receiving communications of the 12S.

null

void i2s_init
void i2s_init(uint8 slc_en)
Configure the related registers of the 12S.

slc_en: Enable the SLC module access. When it's O, the software will operate the FIFO, For other
values for the SLC module directly access FIFO, refer to 2.1.3. Tx/Rx FIFO mode.

void creat _one_link

void creat_one_1l1ink (uint8 own, uint8 eof,uint8 sub_sof, uint16 size, uint16 length, uint32* buf_ptr,
uint32* nxt_ptr, struct sdio_queue* i2s_queue)

Set up a link register structure.

struct sdio_queue® i2s_queue: The first address to be configured structure space.
For details of other parameters, refer to Section 10.2.2. Link list Configuration.

void slc_init

void slc_init (uint8 trans_dev)

Basic configuration of the SLC module. For configuration instructions, refer to Section 10.2.3. SLC
module configuration.

uint8 trans_dev: SLCModule access device, 1is12S, 0is SDIO, other input values are not valid.

10.3.2. CONF Function

Function
Feature

Parameter

Function

Feature

Espressif

CONF_RXLINK_ADDR

CONF_RXLINK_ADDR (addr)

Configure the Rx link list address to the register. For configuration instructions, refer to Section 10.2.3.
SLC module configuration.

addr: link list address
CONF_TXLINK ADDR

CONF_TXLINK_ADDR(addr)

Configure the TX link list address to the register. For configuration instructions, refer to Section 10.2.3.
SLC module configuration.

76/104

2017.05

@ 10. 12S Module Description

Parameter addr: link list address

10.3.3. START Function
START_RXLINK

Function START_RXLINK()
Feature Start the Rx tr_ansmi_ssion of the SLC module. For configuration instructions, refer to Section 10.2.3. SLC
module configuration.
Parameter null
START_TXLINK
Function START_TXLINK()
Feature Start the Tx tr_ansmigsion of the SLC module. For configuration instructions, refer to Section 10.2.3. SLC
module configuration.
Parameter null

Espressif 77/104 2017.05

11. UART Introduction
11. UART Introduction

11.1. Functional Overview

There are two group ESP8266 UART interfaces, respectively:
e UARTO:
- UQTXD: pin26 (UOTXD)
- UORXD: pin25 (UORXD)
- UOCTS: pin12 (MTCK)
- UORTS: pin13 (MTDO)
e UARTT:
- U1TXD: pin14 (GPIO2)

The basic working process of transmission FIFO:

As long as there has data filling into transmission FIFO, it will immediately start sending
process.Since transmission itself is a relatively slow process,other data can be sent to the
transmission FIFO simultaneously. Data sending should be paused when the transmission
FIFO is full ,or it will cause data loss. Transmission FIFO will sent out one by one in
accordance with the order of the data filling in,until the transmission FIFO is completely
empty.Data has been sent will be automatically cleared, at the same time transmission FIFO
will be more of a vacancy.

The basic working process of receiver FIFO:

When the hardware logic receives the data, it will fill them into receiver FIFO. Program
should withdraw the data timely ,the data-dequeue is also a process of deleting data from
FIFO automatically,thus, there will be one more vacancy in receiver FIFO. If the data in the
receiver FIFO can not be removed in time, the receiver FIFO will be full which makes data
loss.

Scenario:

UARTO works as data communication interface and UART1 woks as debug port.

Espressif 78/104 2017.05

@ 11. UART Introduction

- CONVERTER

UARTO will default output some print while booting ,the baud rate of this period print
contents is relate with external crystal frequency.When using the 40M crystal,this section
print baud rate is 115200.When use the 26M crystal,this section print baud rate is 74880.

If this print affect application function, you can abandon print output indirectly while power-
on period in the fourth quarter method.

11.2. Hardware Resources

Both UARTO and UART1 have a length of 128 Byte hardware, read and write FIFO
operations are at the same address.

The hardware registers of two UART module are the same, and distinguished by macro
definitions of UARTO / UART1.
11.3. Parameter Configuration

UART attribute parameters are all in UART_CONFO register, can be found in the
Uart_register.h. You can configure UART properties through modifying the different bit of
the register.

11.3.1. The Baud Rate
The serial of ESP8266 can support the baud rate range from 300 to 115200 * 40.

Espressif 79/104 2017.05

@ 11. UART Introduction

Interface: void UART_SetBaudrate (uint8 uart_no,uint32 baud_rate);

11.3.2. Parity Bit

#define UART_PARITY_EN (BIT(1)) Enable check: 1: enable; O: disable

#define UART_PARITY (BIT(0)) Check type setting 1: Odd parity; 0: Even parity
Interface: void UART_SetParity(uint8 uart_no, UartParityMode
Parity mode);

11.3.3. Data Bit

#define UART_BIT_NUM 0x00000003 //Length of data bit occupies two bit:
Setting these two bit can configure data length O: 5bit ; 1: 6bit ; 2: 7bit ; 3: 8bit
#define UART_BIT_NUM_S 2 //Offset register is 2 (2 bit start)

Interface: void UART_SetWordLength(uint8 uart_no, UartBitsNum4Char
len)

11.3.4. Stop Bit

#define UART_STOP_BIT_NUM 0x00000003 //The length of data bit occupies two bit:
Configure the length of stop bits through setting these two bit can 1 : 1 bit; 2 : 1.5 bit ; 3

: 2 bit

#define UART_STOP_BIT_NUM_S 4 //Register offset is 4 (start from 4th bit)

Interface: void UART_SetStopBits(uint8 uart _no, UartStopBitsNum

bit _num);

11.3.5. Inverting

Each input and output UART signals can reverse configuration internal.
#define UART_DTR_INV (BIT(24))

#define UART_RTS_INV (BIT(23))

#define UART_TXD_INV (BIT(22))

#define UART_DSR_INV (BIT(21))

#define UART_CTS_INV (BIT(20))
#define UART_RXD_INV (BIT(19))
Set the corresponding register,you can reverse the corresponding signal line input / output.
Interface: void UART _SetlLinelnverse

(uint8 uart _no, UART LinelLevellnverse inverse _mask);

Espressif 80/104 2017.05

D)

11.3.6.

11. UART Introduction

Switch Output Port of Print Function

By default, the system os_printf function print output from UARTO,you can set to print from
UARTO or UART1 port through the following interfaces.

void UART_SetPrintPort(uint8 uart _no);

11.3.7. Read The Remaining Number of Bytes in tx / rx Queue

Tx fifo length:
(READ_PERI_REG(UART_STATUS(uart_no))>>UART_TXFIFO_CNT_S)
&UART_TXFIFO_CNT;

Interface: TX_FIFO _LEN(uart_no)

Rx fifo length:
(READ_PERI_REG(UART_STATUS(UARTO0))>>UART_RXFIFO_CNT_S)
&UART_RXFIFO_CNT;

Interface: RF_FIFO_LEN(uart_no)

11.3.8. Loopback Operation (loop-back)

Once configured in UART_CONFO register, uart tx / rx shorted internally.

#define UART_LOOPBACK (BIT(14)) // loopback enable bit,1: enable;0: disable
ENABLE: SET_PERI_REG_MASK(UART_CONFO(UARTO), UART_LOOPBACK);
Interface: ENABLE_LOOP_BACK(uart_no)
DISABLE:CLEAR_PERI_REG_MASK(UART_CONFO(UARTO), UART_LOOPBACK);
Interface: DISABLE_LOOP_BACK(uart_no)

11.3.9. Line Stop Signal

To produce the line stop signal,you can set UART_TXD_BRK 1,then after UART
transmission queue complete sending it, it will output a break signal (tx output low), set it O
if you need to stop the output.

#define UART_TXD_BRK (BIT(8)) //Line stop signal, 1:enable ; O: disable

11.3.10.Flow Control

Espressif

Configuration process:

e Configure pin12, pin13 of UARTO pin as UOCTS and UORTS functions.
#define FUNC_UORTS 4
#define FUNC_UOCTS 4
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDO_U, FUNC_UORTS);

81/104 2017.05

11. UART Introduction

PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, FUNC_UOCTS);

* Hardware flow control in the receive direction can configure thresholds,when the
length of rx fifo is greater than the set threshold,UORTS feet will be pulled to prevent
the other party sending.

Configured the thresholds of receiving flow control:
The threshold related configurations are generally defined in UART_CONF1 register.

#define UART_RX_FLOW_EN (BIT(23)) The 23rd bit enabled to receive flow control: O:
disable; 1: enable

#define UART_RX_FLOW_THRHD 0x0000007F //Threshold, occupied 7bit, range 0 ~ 127
#define UART_RX_FLOW_THRHD_S 16 //Register offset is 16 (start from 16th bit)

¢ Once configure enable of the flow control of sending direction configuration,the
register in UART_CONFO:

#define UART_TX_FLOW_EN (BIT(15)) Enable transmission flow control: O: disable ; 1:
enable

e |nterface:
Void UART_SetFlowCtrl(uint8 uart_no,UART_HwFlowCtrl flow_ctrl,uint8 rx_thresh);
e)demo hardware board connections:

Need to connect the J68 (UOCTS) and J63 (UORTS) jumper .

11.3.11.0ther Interfaces

TX_FIFO_LEN(uart_no) //Macro definition, the current length of the transmit queue
RF_FIFO_LEN(uart_no) //Macro definition, the current length of the receiving queue

11.4. Configure Interrupt

Since all interrupt events will be conducted together in the "OR" operation before being
sent to the interrupt controller, UART can only generate an interrupt request each time.By
polling the interrupt state function UART_INT_ST (uart_no),software can deal with multiple
interrupt events in one interrupt service function(multiple if parallel statement).

11.4.1. Interrupt register

Espressif

Interruption registers in UART:

UART_INT_RAW Interrupt the original status register

UART_INT_ENA Interrupt enable register: Indicates interrupt the current enable UART
UART_INT_ST Interrupt Status Register: Indicates the currently active interrupt status

UART_INT_CLR Clear Interrupt register:set the corresponding bit to clear the interrupt
status register

82/104 2017.05

11. UART Introduction

11.4.2. Interface

Open interrupt enable: UART_ENABLE_INTR_MASK(uart_no,ena_mask);
Close interrupt enable:

UART_DISABLE_INTR_MASK (uart_no,disable_mask);

Clear interrupt enable:
UART_CLR_INTR_STATUS_MASK(uart_no,clr_mask);

Get interrupt status: UART_GET_INTR_STATUS(uart_no);

11.4.3. Interrupt Type

Espressif

Receive full interrupt
Interrupt status bits:UART_RXFIFO_FULL_INT_ST

Definition: When configure threshold and enable interrupts, triggered will interrupt when rx
fifo data length is greater than the threshold.

Application:more applied in receiving UART data ,cooperating with flow control,dealing with
directly or posting messages or turn into buffer.For example,when the configuration of the
threshold is 100 and the enable full is interruption, the full will interrupt once the serial port
receive 100 Bytes.

Configure threshold value:
Full interrupt threshold
In the UART_CONF1 register

#define UART_RXFIFO_FULL_THRHD 0x0000007F //The threshold mask, 7bit long and
range O ~ 127

#define UART_RXFIFO_FULL_THRHD_S 0 //Shift register is O (start from Obit)
Set enable to interrupt:
In UART_INT_ENA register

#define UART_RXFIFO_FULL_INT_ENA (BIT(0)) //full interrupt enable bit, 1: enable;0:
disable

clear interrupt status:

As for special full interrupts, you need first to read all fifo received data empty, then write
the clear interruption status register.Otherwise, the interrupt status bit will be set again after
exit.

Please see details in examples of interrupt handling.
Receive overflow interrupt
Interrupt status bits:UART_RXFIFO_OVF_INT_ST

83/104 2017.05

Espressif

11. UART Introduction

Definition: When enable receive overflow to interrupt and the length of the receive queue is
greater than the total length of the queue (128 Bytes), it will trigger the interrupt signal.

Trigger scene: Generally, it’s only under the case of unset flow control,because there will not
occur overflow when has flow control.Different from the full interrupt is artificially set the
threshold and the data will not lose,overflow interrupt triggering will usually has data loss.
Can be used for debugging and error checking.

Set enable to interrupt:
In UART_INT_ENA register

#define UART_RXFIFO_OVF_INT_ENA (BIT(4)) //Overflow interrupt enable bit: 1: enable; O:
disable

Clear interrupt status:

Read queue value to make the queue length less than 128, then set the clear interrupt
status register.

Receive timeout interrupt
Interrupt status bit: UART_RXFIFO_TOUT_INT_ST

Definition:When configure threshold value of tout,enable interrupts and UART begin to
receive data, it will triggered tout interrupt once stop transmission time exceeds the set
threshold.

Applications: more applied in handling serial commands or data, process the data directly,
or post a message, or turn into deposited buffer.

Configure threshold and function enable:

Tout interrupt threshold (or threshold) in UART_CONF1 register.

Tout unit threshold is about 8 data bits uart time (approximately one byte).

#define UART_RX_TOUT_EN (BIT(31)) /Timeout function enable bit: 1: enable;0: disable

#define UART_RX_TOUT_THRHD 0x0000007F //Timeout threshold configuration bits, a
total of seven and range 0 ~ 127

#define UART_RX_TOUT_THRHD_S 24 //Register offset is 24 (start from 24th bit)
Set enable to interrupt:
In UART_INT_ENA register

#define UART_RXFIFO_TOUT_INT_ENA (BIT(8)) tout // Interrupt enable bit:1: enable;0:
disable

Clear interrupt status:

Like full interrupts,tout interrupt also need to firstly read out all received fifo data,then clear
interrupt status register.Otherwise, interrupt status bit will still be set after exiting.

Please see details in examples of interrupt handling.

84/104 2017.05

Espressif

11. UART Introduction

Send empty fifo interrupt
Interrupt status bit: UART_TXFIFO_EMPTY_INT_ST

Definition: After configure empty threshold value and enable interrupts ,it will trigger this
empty interrupt when the data length of the data-send queue is less than the set threshold.

Application: Can be used in forwarding the buffer data into UART automatically with the
cooperation of interrupt handler function.For example,set the empty threshold to 5, then

when the tx fifo length be less than 5 bytes, trigger the empty interrupt,in the empty

interrupt handler ,take the data from the buffer to fill the tx fifo fullloperating speed is much
higher than tx fifo fifo transmission speed). Continue the cycle until the buffer data has
totally been sent out, then close the empty interrupt.

Configure threshold:
Empty interrupt threshold (or threshold) in UART_CONF1 register

#define UART_TXFIFO_EMPTY_THRHD 0x0000007F //Send queue empty interrupt
threshold configuration bits, seven bits and range 0 ~ 127

#define UART_TXFIFO_EMPTY_THRHD_S 8 //Register Offset is 8 (start from 8th)
To enable interrupt:
In UART_INT_ENA register

#define UART_TXFIFO_EMPTY_INT_ENA (BIT(1)) //empty interrupt enable bit, 1: enable;0:
disable

Clear interrupt status:

Fill the sending queue above the threshold,and clear the corresponding interrupt status
bit.If there is no data need to send, close the interrupt enable bits.

Please see details in examples of interrupt handling.
Error detection interrupt

Interrupt status bit:

Parity Error Interrupt: UART_PARITY_ERR_INT_ST
Termination line error interrupt(line-break): UART_BRK_DET_INT_ST

Received frame error interrupt: UART_FRM_ERR_INT_ST
Definition:
Parity error interrupt (parity_err): received byte exists parity error.

Termination line error interrupt(BRK_DET):receive break signal,or receive error initial
conditions (rx line always stays low)

Receive frame error interrupt (frm_err):stop bit is not 1.
Application:

Generally used for error detection.

85/104 2017.05

@ 11. UART Introduction

To enable interrupt:
In UART_INT_ENA register,

#define UART_PARITY_ERR_INT_ENA (BIT(2)) //Parity error enable interrupt bit, 1:enable;
O:disable

#define UART_BRK_DET_INT_ENA (BIT(7)) //Terminal line error enable interrupt bit
1: enable;0: disable

#define UART_FRM_ERR_INT_ENA (BIT(3)) //Received frame error to enable interrupt bit
1: enable;0: disable

Clear interrupt status:

Clear the interrupt status bit after dealing with corresponding error.

Flow control status interrupt

Interruption status bit:

UART_CTS_CHG_INT_ST

UART_DSR_CHG_INT_ST

Definition:

When the CTS, DSR pin-line level changes, trigger this interrupt.

Application:

Generally use with flow control, when the trigger the interrupt, check the corresponding
flow control line status,if it’s high, stop writing to tx queue.

#define UART_CTS_CHG_INT_ST (BIT(6))
#define UART_DSR_CHG_INT_ST (BIT(5))
Set enable interrupt:

In UART_INT_ENA register,

#define UART_CTS_CHG_INT_ENA (BIT(6)) CTS //Line status enable interrupt bit,
1:enable;0:disable

#define UART_DSR_CHG_INT_ENA (BIT(5)) DSR //Line status enable interrupt bit,
1:enable;0:disable

Clear interrupt status:

After dealing with the corresponding error,clear the interrupt status bit.

Espressif 86/104 2017.05

D)
11.5.

11.6.

Espressif

11. UART Introduction

Example of Interrupt Handler Process

req 0x3ff20020, bitz, bito

!/ os_printf{"full len:%d\n\r" fifo_len);//for dbg

/fos_printf{"tout len: %dyn\r" fifo_len);//for dbg

Abandon Serial Output During Booting

When ESP8266 is booting, UARTO will default print out some information,if this should be
un-acceptable,we can abandon these print output via setting UART internal switching pin
functions,exchange UOTXD, UORXD with UORTS, UOCTS during initialization.

Calling interface: void system uart _swap(void) ;
Before initialization:

UARTO:

UOTXD: pin26(u0txd)

UORXD: pin25(u0rxd)

UOCTS: pin12(mtck)

UORTS: pin13(mtdo)

After the initialization pin-swap,
UOTXD: pin13(mtdo)

UORXD: pin12(mtck)

UOCTS: pin25(uOrxd)

87/104 2017.05

@ 11. UART Introduction

UORTS: pin26(u0txd)

As the transceiver feet of UARTO,hardware pin13 and pin12 won'’t print out duing
booting,but be attention to ensure pin13 (Mtdo) can not be pulled up by external in
ESP8266 is booting.

Espressif 88/104 2017.05

12. PWM Interface
12. PWM Interface

12.1. Functional Overview

12.1.1. Features

PWM (Pulse Width Modulation) can be implemented on Frame Rate Control 1 (FRC1) via
software programming, achieving multi-channelled PWM with the same frequency but
different duty ratio. It can be used to control devices such as color lights, buzzer, and
electric machines, etc.

LLl Note:
FRC1 is a 23-bit hardware timer.
Features of PWM are listed below:
e Apply NMI (Non Maskable Interrupt) to interrupt, more precise.
e (Can be extended to 8 channels of PWM signal.
e Resolution ratio higher than 14 bit, the minimum resolution can reach 45 ns.

e Configuration can be completed by call interface functions, without set the register.

! Notice:
e PWM can not be used when APIs in hw_timer.c are in use, because they all use the same hardware
timer.

e Do not set the system to be Light Sleep mode (Do not call
wifi_set sleep_type(LIGT_SLEEP) ;, because that Light Sleep will stop the CPU, it can not
be interrupted by NMI during light sleep.

e TJo enter Deep Sleep mode, PWM needs to be stopped first.

12.1.2. Implementation

An optimized software algorithm provided by ESP8266 system enable the transmission of
multi-channel PWM signals via GPIO (General Purpose Input Output) interface by way of
mounting NMI on FRC1 timer.

The clock of PWM is provided by high-speed system clock, the frequency speed of which
can reach as high as 80MHz. Through pre-frequency divider, the clock source can be
divided into 16 separated frequencies, the input clock frequency of which is 5SMHz. PWM
can issue coarse tuning timing via FRC1, which combined with fine tuning issued by the
high-speed system clock, can improve the resolution to as much as 45 ns.

LLI Note:
The highest priority level of interrupt owned by NMI ensures the precision of PWM output waveform.

Espressif 89/104 2017.05

12. PWM Interface

12.1.3. Configuration

In timing interrupt, to exist the program as soon as possible, timing parameters of the
next period of PWM waveform can be loaded when PWM period started.

After the duty ratios of every channel have been configured, the system will call
function pwm_start() to calculate timing cycle. Before that, parameters of all current
channels will be stored and protected by the system, calculation completion bits will
be cleared, too. When PWM period comes, parameters stored by the system will be
invoked.

When PWM period is discontinued new parameters will be applied, and flags should
be set when the calculation of timing cycle is completed, so that cycles between
different colour shade with each new frame and simulate an intermediate shade,
achieving higher quality colour. The control of RGB colour lights is an good example
of PWM control.

¢ The specific GPIO used can be configured in user_light.h. In our demo SDK, 5

channels of PWM is applied, however, it can be extended to 16 channels. Details on
how to extend the channels of PWM is explained in Chapter 3. The minimum
resolution can reach 45 ns at 1KHz refresh rate, while the minimum duty ratio can

reach 1/22222.

12.1.4. Parameter Specification

¢ Minimum resolution: 45 ns (approximately speaking, the PWM input clock frequency

is 22.72 MHz): >14 bit PWM @ 1 kHz

* PWM period: 1000 ps (1 KHz) ~ 10000 ps (100 Hz)

12.2. Details on pwm.h
12.2.1. Sample Codes

#ifndef _ PWM_H__
#define _ PWM_H__
#define PWM_CHANNEL_NUM_MAX 8

struct pwm_single_param {
single PWM parameter

uintlé gpio_set;
uintlé gpio_clear;

uint32 h_time;
into FRC1_LOAD

b

struct pwm_param {
PWM parameter

//8 channels
//define the

//GPI0O needs
//GPIO needs

//time needs

PWM at most

structure of a

to be set
to be cleared

to be written

//define the structure of

Espressif 90/104

2017.05

12. PWM Interface

Uint32 period; //PWM period
Uint32 freq; //PWM frequency
uint32 duty[PWM_CHANNEL_NUM_MAX] ; //PWM duty ratio

b

void pwm_init(uint32 period, uint32 *duty,uint32
pwm_channel _num,uint32 (*pin_info_list)[3]);

void pwm_start(void);

void pwm_set duty(uint32 duty, uint8 channel);

uint32 pwm_get duty(uint8 channel);

void pwm_set freq(uint32 period);

uint32 pwm_get freq(void);

12.2.2. Interface Specifications

Espressif

1. pwm_init

Function Name pwm_init

Definition PWM initialization.
3 | d pwm_init (uint32 freq, uint32 *duty, uint32
SlRlls Ceels pwm_channel _num,uint32 (*pin_info list)[31);

Description PWM GPIO, initializing parameters and timer.

Parameters

Call

uint32 freq: PWM period.

uint82 *duty: duty ratio of each PWM channel.

uint82 pwm_channel_num: the number of PWM channels.

uint32 (*pin_info_list)[3]: This parameter, which is made up of a n x 3 array pointer,
defines the GPIO hardware parameter of each PWM channel. Registers of GPIO, pin

multiplexing of 10, and the serial number of each GPIO are defined in the array. Take the
initialization of a 3-channel PWM for example:

uint32 io_infol[]l[3] =
{{PWM_0_OUT_IO_MUX,PWM_O OUT_IO FUNC,PWM_0_OUT_IO_NUM},

{PWM_1_OUT_I0_MUX,PWM_1 OUT_IO FUNC,PWM 1 OUT_IO_NUM},
{PWM_2_OUT_I0_MUX,PWM_2 OUT_IO_FUNC,PWM_2 OUT_IO NUM}};

pwm_init(light _param.pwm_period,light _param.pwm duty,
3,io0_info);

Call the function when the system is been initialized. Currently the function can be called
only once.

Returned Value ~ Null

2. pwm_set period

Function Name pwm_set_period

Definition Set PWM period.

91/104 2017.05

Espressif

12. PWM Interface

Sample code pwm_set period (uint32 period)

Set PWM period, unit: ps.

Description) .

For example, PWM period at 1KHz is1000 ps.
Parameters uint32 period: PWM period.
Call Call pwm_start() after the parameters has been set.

Returned Value ~ Null

3. pwm_set duty
Function Name pwm_set_duty
Definition Set the duty ratio of PWM signal at a certain channel

Sample code pwm_set duty (uint32 duty, uint8 channel)

Set PWM duty ratio. Set the time period of PWM signal when the voltage is high. The value

Descrintion of duty ratio change with PWM period.
ripti
= PWM duty ratio can reach period*1000/45 at most. For example, the range of duty ratio is

between 0 and 22222 at 1kHz refresh rate.
e uint32 duty: set the time parameter when the voltage is high. Duty ratio is (duty*45)/
(period*1000).

uint8 channel: PWM channel that needs to be set at present. This parameter is defined
in PWM_CHANNEL.

Parameters

Call Call pwm_start () after the parameters has been set.

Returned Value ~ Null

4. pwm_get period

Function Name pwm_get_period

Description Get the current PWM period.
Sample code pwm_get_period (void)
Description None.

Returned Value PWM period, unit: ys.
5. pwm_get duty
Function Name pwm_get_duty
Description Get the duty ratio of current PWM signal at a certain channel.
Sample code pwm_get duty (uint8 channel)

Parameter uint8 channel: get the current PWM channel. This parameter is defined in PWM_CHANNEL .

92/104 2017.05

@ 12. PWM Interface

Call Call pwm_start() after the parameters has been set.

Returned Value Duty ratio of a certain PWM channel, the value returned is (duty*45)/ (period*1000).
6. pwm_start

Function Name pwm_start

Description Update PWM parameters.

Sample code pwm_start (void)

Parameter None.

Call Call pwm_start() when PWM related parameters have been set.

Returned Value Null.

12.3. Custom Channels

Users can customize PWM channels. Below is a detailed instruction on how to set GPIO4
as the forth channel for PWM signal output.

1. Modify initialization parameters.

uint32 io_infol[][3]={
{PWM_0®_OUT_IO_MUX,PWM_6 OUT_IO FUNC,PWM 6 OUT_IO_NUM},
{PWM_1 OUT_IO_MUX,PWM_1 OUT_IO_FUNC,PWM_1 OUT_IO_NUM},
{PWM_2_OUT_IO_MUX,PWM_2 OUT_IO_FUNC,PWM_2 OUT_IO_NUM},
{PWM_3_OUT_IO_MUX,PWM_3 OUT_IO FUNC,PWM_3 OUT_IO NUM},
{PWM_4 OUT_IO_MUX,PWM_4 OUT_IO_FUNC,PWM_4 OUT_IO_NUM},
}s

pwm_init(light_param.pwm_period, light_param.pwm_duty,
PWM_CHANNEL,io_info);

2. Modify user_light.h.

#define PWM_O_OUT_IO_MUX PERIPHS_IO_MUX_MTDI_U
#define PWM_O_OUT_IO_NUM 12

#define PWM_©_OUT_IO_FUNC FUNC_GPIO12

#define PWM_1_OUT_IO_MUX PERIPHS_IO_MUX_MTDO_U
#define PWM_1_OUT_IO_NUM 15

#define PWM_1_OUT_IO_FUNC FUNC_GPIO15

#define PWM_2 OUT_IO0_MUX PERIPHS_I0_MUX_MTCK_U
#define PWM_2 OUT_IO_NUM 13

Espressif 93/104 2017.05

12. PWM Interface

#define
#define
#define
#define
#define
#define
#define
#define

PWM_2_OUT_IO_FUN CFUNC_GPIO13
PWM_3_OUT_IO_MUX PERIPHS IO _MUX_GPIO04_U
PWM_3_OUT_IO_NUM 4

PWM_3_OUT_IO_FUNC FUNC_GPIO4
PWM_4_OUT_IO_MUX PERIPHS IO _MUX_GPIO5_U
PWM_4_OUT_IO_NUM 5

PWM_4_OUT_IO_FUNC FUNC_GPIOS
PWM_CHANNEL 5

Espressif

94/104

2017.05

13. IR Remote Control User Guide

13. IR Remote Control User Guide

13.1. Introduction to Infrared Transmission

Users can request the sample codes of infrared transmission by sending an e-mail to
feedback@espressif.com.

This document introduces how to implement transmitting or receiving remote control codes
using the 32-bit NEC IR transmission protocol as an example.

13.1.1. Transmitting

Users can use the following methods to transmit carrier wave:

e BCKof 125
e 38KHz carrier frequency generated by WS pin

e Carrier wave generated by any GPIO via sigma-delta function. However, the duty ratio
of carrier wave generated by sigma-delta is around 20%, thus MTMS pin (GPIO14) is
suggested, for this pin can generate standard square wave at a carrier frequency of
38KHz and a duty ratio of 50% exactly.

In the sample codes, data transmission queue is generated via the DSR TIMER interface of
system FRC2, while a state machine driving the transmission of infrared data is also

generated.

Considering that the timing precision of transmitting NEC infrared code should reach a level
of us, when initiating IR TX, system_timer_reinit should be invoked to improve the timing
precision of FRC2. In user_config.h, enable the definition of USE_US_TIMER, then interface
function os_timer_arm_us can be invoked to implement precise timing at the level of ps.

13.1.2. Receiving

Espressif

The receiving of remote control codes is implemented via edge-triggered interrupt. When
one system is substracted from one another, the result is the duration time of the wave.
This can be processed by software state machine ir_intr_handler.

! Notice:

* Receiving of infrared remote control codes is implemented via GPIO interrupt. However, the system
can only register only one IO interrupt handler program at the same time. If other IOs also need
interrupts, please handle these interrupts in the same processing program by determine the source of
interrupt and deal with them accordingly.

e In non-OS version of SDK, functions with ICACHE_FLASH_ATTR properties, including print function
os_printf defined in IROM section of the Flash, should NOT be invoked in the whole process of
interrupt handling process such as GPIO, UART, FRC, etc.

95/104 2017.05

@ 13. IR Remote Control User Guide

13.2. Parameters Configuration

All kinds of parameters related to transmitting and receiving of infrared remote control
codes can be configured in ir_tx_rx.h.

Config Parameters for Transmitting:

#define GEN_IR CLK FROM_IIS ©
// Config the mode of carrier
// 1: IIS clock signal generates carrier wave for transmission

// 0: generate carrier wave for transmission under GPIO sigma-delta
model

// Suggest using MTMS pin to implement infrared transmitting
function.

// Config the register function and
multiplexing function of infrared pins

#define IR_GPIO OUT_MUX PERIPHS IO MUX_GPIO5 U
#define IR_GPIO OUT NUM 5
#define IR_GPIO OUT FUNC FUNC_GPIO5

Config Parameters for Receiving:

// Config the buffer size via infrared receiving

#define RX_RCV_LEN 128

// Config the GPIO register function and
multiplexing function of infrared pins

#define IR_GPIO_IN_NUM 14
#define IR_GPIO_IN_MUX PERIPHS_IO_MUX_MTMS_U
#define IR_GPIO_IN_FUNC FUNC_GPIO14

Other parameters:
#define USE_US_TIMER can be defined in user_config.h.
Modes of Transmitting Carrier Waveform:

Mode 1: IIS Clock Mode

MTMS pin, or GPIO14 is used to transmit carrier waveform under IIS clock mode. Please
refer to Figure 1 below.

#define GEN_IR_CLK_FROM_IIS 1
#define IR_GPIO_OUT_MUX PERIPHS_IO_MUX_MTMS_U
#define IR_GPIO_OUT_NUM 14

Espressif 96/104 2017.05

@ 13. IR Remote Control User Guide

#define IR_GPIO_OUT_FUNC FUNC_GPIO14

21 1420005 SRR

Mode 2: Sigma-delta Mode

#define GEN_IR_CLK_FROM_IIS 0

#define IR_GPIO_OUT_MUX PERIPHS_I0_MUX_GPIOS5_U
#define IR_GPIO_OUT_NUM 5
#define IR_GPIO_OUT_FUNC FUNC_GPIO5

21l MU SEREESE D
. | I ¢ ,]
[T '

13.3. Functions of Infrared Sample Codes

The below functions can be implemented using infrared sample codes provided by
Espressif Systems:

e Functions of infrared transmitting and receiving can be invoked in the initialization
process, and a 4s loop timer can be configured to transmit infrared remote control
codes.

¢ Check the ring buffer of infrared remote control codes simultaneously. If there is any
data in the queue, it will be printed out.

e [f any carrier waveform in comply with NEC infrared remote control protocol is
received by the state machine of infrared receiver, the instruction fields will be stored
in the ring buffer of infrared receiving codes.

Espressif 97/104 2017.05

14.

14. Sniffer Introduction

Shiffer Introduction

14.1. Sniffer Introduction

ESP8266 can enter promiscuous mode (sniffer) and capture IEEE 802.11 packets in the air.
The following HT20 packets are support:
e 802.11b

e 802.11g
e 802.11n (from MCSO0 to MCS7)
* AMPDU types of packets

The following are not supported:
e HT40
e LDPC

Although ESP8266 can not completely decipher these kinds of IEEE80211 packets
completely, it can still obtain the length of these special packets.

In summary, while in sniffer mode, ESP8266 can either capture completely the packets or
obtain the length of the packet:

e Packets that ESP8266 can decipher completely; ESP8266 returns with the
- MAC address of the both side of communication and encryption type and
- the length of entire packet.

e Packets that ESP8266 can only partial decipher; ESP8266 returns with
- the length of packet.

Structure RxControl and sniffer_buf are used to represent these two kinds of packets.
Structure sniffer_buf contains structure RxControl.

struct RxControl {
signed rssi:8; // signal intensity of packet
unsigned rate:4;
unsigned is_group:1;
unsigned:1;

unsigned sig _mode:2; // 0:is not 1lln packet; non-0:is 1lln
packet;

unsigned legacy_length:12; // if not 11n packet, shows length of
packet.

unsigned damatch0@:1;

unsigned damatchl:1;

Espressif

98/104 2017.05

14. Sniffer Introduction

unsigned
unsigned

unsigned
modulation

unsigned
not

unsigned
packet.

unsigned

unsigned

unsigned:

unsigned
unsigned

unsigned

bssidmatch0:1;
bssidmatchl:1;
MCS:7; // if is 11n packet, shows the

// and code used (range from 0 to 76)
CWB:1; // if is 1ln packet, shows if is HT40 packet or

HT length:16;// if is 11ln packet, shows length of

Smoothing:1;

Not_Sounding:1;

1;

Aggregation:1;

STBC:2;

FEC_CODING:1; // if is 11ln packet, shows if is LDPC

packet or not.

unsigned
unsigned
unsigned

unsigned

unsigned:

b

SGI:1;

rxend _state:8;

ampdu_cnt:8;

channel:4; //which channel this packet in.

12;

struct LenSeq{

ulé len;

ulé seq;
number,

// length of packet

// serial number of packet, the high 12bits are serial

// low 14 bits are Fragment number (usually be 0)

u8 addr3[6]; // the third address in packet

b

struct sniffer_buf{

struct RxControl rx_ctrl;

u8 buf[36]; // head of ieee80211 packet

ulé cnt;

// number count of packet

struct LenSeq lenseq[l]; //length of packet

Espressif

99/104 2017.05

14. Sniffer Introduction

struct sniffer_buf2{

b

struct RxControl rx_ctrl;

u8 buf[112]; //may be 240, please refer to the real source code
ulé cnt;

ulé len; //length of packet

Espressif

Callback wifi_promiscuous_rx has two parameters (buf and 1en). len means the
length of buf, it can be: 1en = sizeof(struct sniffer_buf2), 1en = X * 10, 1en = sizeof(struct
RxControl):

Case of LEN == sizeof (struct sniffer_buf2)

buf contains structure sniffer_buf2:itis the management packet, it has 112
Bytes data.

sniffer_buf2.cntis 1.

sniffer_buf2.1len isthe length of packet.

Case of LEN ==X *10

buf contains structure sniffer_buf: this structure is reliable, data packets
represented by it has been verified by CRC.

sniffer_buf.cnt means the count of packets in buf. The value of 1en depends
onsniffer_buf.cnt.

- sniffer_buf.cnt==0, invalid buf; otherwise, 1en =50 + cnt * 10
sniffer_buf.buf contains the first 36 Bytes of IEEES0211 packet. Starting from
sniffer_buf.lenseq[0], each structure lenseq represent a length information of
packet. Tenseq[0] represents the length of first packet. If there are two packets
where (sniffer_buf.cnt ==2), lenseq[1] represents the length of second
packet.

If sniffer_buf.cnt >1,itis a AMPDU packet, head of each MPDU packets are
similar, so we only provide the length of each packet (from head of MAC packet to
FCS)

This structure contains: length of packet, MAC address of both sides of
communication, length of the head of packet.

Case of LEN == sizeof(struct RxControl)

buf contains structure RxControl; but this structure is not reliable, we can not get
neither MAC address of both sides of communication nor length of the head of
packet.

For AMPDU packet, we can not get the count of packets or the length of packet.

100/104 2017.05

D)

14. Sniffer Introduction

¢ This structure contains: length of packet, rssi and FEC_CODING.
e RSSI and FEC_CODING are used to guess if the packets are sent from same device.

LLI Note:
For the case of LEN == sizeof(struct RxControl), the methods to calculate the length of packet are as below:

e [fsig_mode == 0, the length of packet is the legacy_length.

o Otherwise, the length of packet is in struct sniffer_buf and sniffer_buf2, and it is more reliable.

Summary
We should not take too long to process the packets. Otherwise, other packets may be lost.

The diagram below shows the format of a IEEE80211 packet:

°°‘2°'$¢ 2 6 6 6 2 6 2 4 0-7951 4
Frame | Duration/ | Address | Address | Address | Sequence | Address QoS HT Frame FCS
Control ID 1 2 3 Control 4 Control | Control Body
B -
MAC Header
Figure 8-30—Data frame

e The first 24 Bytes of MAC Header of data packet are needed:
- Address 4 field depends on FromDS and ToDS which is in Frame Control;
- QoS Control field depends on Subtype which is in Frame Control;
- HT Control field depends on Order Field which is in Frame Control;
- More details are found in IEEE Std 80211-2012.

e For WEP packets, MAC Header is followed by 4 Bytes IV and before FCS there are 4
bytes ICV.

¢ For TKIP packet, MAC Header is followed by 4 Bytes IV and 4 bytes EIV, and before
FCS there are 8 bytes MIC and 4 bytes ICV.

* For CCMP packet, MAC Header is followed by 8 Bytes CCMP header, and before
FCS there are 8 bytes MIC.

14.2. Sniffer Application Scenarios

Espressif

Because some APs won’t transmit UDP broadcast packets to WLAN, so only the UDP
packets from mobile phone can be listened. These UDP packets are from mobile phone to
AP, and are encrypted.

Scenario 1: IOT_device can get all packets from mobile phone

This scenario requires:

101/104 2017.05

Espressif

14. Sniffer Introduction

e The connection between mobile phone and AP is working in 802.11b, or 802.11g,
or 802.11n HT20 mode.

¢ The distance between mobile phone and AP is longer than the distance between
mobile phone and IOT_device.

IOT-device firmware can set filter of MAC address or MAC-header (include MAC-cryption-
header), it can also set a filter for retransmission.

Meanwhile, for 802.11n AMPDU packets, IOT_device can also get the length of packet and
MAC-header (include MAC-cryption-header)

Scenario 2: |IOT_device can not get all packets from mobile phone, signal is strong,
but packet format is not supported.

Case 1:

The distance between mobile phone and AP is much longer than the distance between
mobile phone and IOT_device. Then the high-frequency packets from mobile phone can be
got by AP, but can not be got by IOT_device.

For example, mobile phone sent MCS7 packets which can be got correctly by AP, but
IOT_device can only parse its packet header of physical layer (HT-SIG), because packet
header of physical layer is encoded on low-speed (6 Mbps).

Case 2:
Format of packets that mobile phone sent to AP is not supported by IOT_device, such as:
e HT40;
* LDPGC;
e 11n MCS8 and later version, such as MIMO 2x2.
|IOT_device can not get the whole packet, but can parse its packet header of physical layer
(HT-SIG).

In both case 1 and case 2, IOT_device can get HT-SIG which include the length of packet
in physical layer. Please pay attention on following items when using it:

e When it isn’t AMPDU packet or only one sub-frame in AMPDU packet, the length of
UDP packet can be speculated. If the time interval of UDP packets which sent from
phone APP is long (20ms ~ 50ms) , each UDP packet will in different packets in
physical layer, may be a AMPDU packet which only has one sub-frame.

e Firmware of IOT_device can filter packets from other devices according to RSSI.

e Packet of retransmission need to be filter according to the packets sequence, it
means that length of packets which sent consecutively need to be different. For
example:

- Two useful packets can be separated by a specific packet. The specific packet
works like separative sign.

- Length of packet in odd number to be 0 ~ 511, length of packet in even number
to be 512 ~1023,

102/104 2017.05

14. Sniffer Introduction

14.3. Phone APP

For Scenario 2, phone APP should notice:

Time interval of each UDP packet to be longer than 20ms

Two data packets can be separated by a specific packet. The specific packet works
like separative sign.

Packet with redundant data so that packet can verify each other.

Set flag-packet at the beginning of sequence. Then phone APP can be cyclic
sending the whole sequence.

Only need to send the lowest 2 Bytes of AP’s BSSID (MAC address), IOT-device can
still get it. If AP will broadcast its SSID, then phone APP need not to send AP’s SSID
either. So AP beacon need to be analyzed to check if the AP will broadcast its SSID.
Length of UDP packet need to be multiply by 4. Because when phone APP sent a

AMPDU packet which only has one sub-frame, packet length will be filled to be a
multiple of 4.

For Scenario 1, phone APP can send packets as fast as possible.

Phone APP won't know it is Scenario 1 or Scenario 2 for IOT_device.

14.4. I0T-device Firmware

For Scenario 2, IOT-device should notice:

Espressif

Search the channel which has strongest signal first, according to RSSI.

Filter useless packets according to RSSI. Considering 10 ~ 15db fluctuations in the
air, some packets may be decline 10db or more. We could search the strongest
signal at first, then extend the range since find the target sequence.

Check the Aggregation bit of HT-SIG to distinguish AMPDU packet.
AMPDU packet can only be encrypt by CCMP(AES).

To design the length of packet that works as separative sign, different QoS, different

encryption algorithm and AMPDU packet will be a multiple of 4, all of these should be
taken into consideration.

Use relative value to transmit information, for example, the value that the length of
data packet minus the length of packet that works as separative sign.

103/104 2017.05

@ Appendix

Appendix

LLI Note:
For GPIO registers, SPI registers, UART registers and Timer registers, please refer to the following
appendixes.

Chapter Title Subject
Appendix 1 GPIO Registers Information on GPIO register names, addresses and description.
Appendix 2 SPI Registers Information on SPI register names, addresses and description.
Appendix 3 UART Registers Information on UART register names, addresses and description.
Appendix 4 Timer Registers Information on Timer register names, addresses and description.

Espressif 104/104 2017.05

GPIO Base Address
0x60000300

GPIO RegAddr = PERIPHS_GPIO_BASEADDR (OFFSET*4)

NU
M
0

OFFSET
0x0000

0x0001

0x0002

0x0003

0x0004

0x0005

0x0006

0x0007

0x0008

0x0009

0x000a

0x000b

0x000c

0x000d

0x000e

0x000f

0x0010

0x0011

0x0012

0x0013

0x0014

0x0015

0x0016

0x0017

0x0018

0x0019

0x001a

0x001b

0x001c

RegAddr
0x60000300 GPIO_OUT

RegName

0x60000304 GPIO_OUT_W1TS
0x60000308 GPIO_OUT_W1TC

0x6000030C GPIO_ENABLE

0x60000310 GPIO_ENABLE_W1TS
0x60000314 GPIO_ENABLE W1TC
0x60000318 GPIO_IN
0x6000031C GPIO_STATUS
0x60000320 GPIO_STATUS_W1TS
0x60000324 GPIO_STATUS_W1TC

0x60000328 GPIO_PINO

0x6000032C (GPIO_PIN1

0x60000330 GPIO_PIN2

0x60000334 GPIO_PIN3

0x60000338 GPIO_PIN4

0x6000033C GPIO_PINS

0x60000340 GPIO_PING

0x60000344 GPIO_PIN7

0x60000348 GPIO_PINg

0x6000034C GPIO_PINg

0x60000350 GPIO_PIN10

0x60000354 GPIO_PIN11

0x60000358 GPIO_PIN12

0x6000035C GPIO_PIN13

0x60000360 GPIO_PIN14

0x60000364 GPIO_PIN15

0x60000368 GPIO_SIGMA_DELTA

0x6000036C GPIO_RTC_CALIB_SYNC

0x60000370 GPIO_RTC_CALIB_VALUE

Appendix 1 — GPIO Registers

Signal

GPIO_BT_SEL
GPIO_OUT_DATA

GPIO_OUT_DATA W1TS
GPIO_OUT_DATA_ W1TC

GPIO_SDIO_SEL
GPIO_ENABLE_DATA

GPIO_ENABLE_DATA_ W1TS
GPIO_ENABLE_DATA_ W1TC
GPIO_STRAPPING
GPIO_IN_DATA
GPIO_STATUS_INTERRUPT
GPIO_STATUS_INTERRUPT_W1TS
GPIO_STATUS_INTERRUPT_W1TC
GPIO_PINO_WAKEUP_ENABLE
GPIO_PINO_INT_TYPE
GPIO_PINO_DRIVER
GPIO_PINO_SOURCE
GPIO_PIN1_WAKEUP_ENABLE
GPIO_PIN1_INT_TYPE
GPIO_PIN1_DRIVER
GPIO_PIN1_SOURCE
GPIO_PIN2_WAKEUP_ENABLE
GPIO_PIN2_INT_TYPE
GPIO_PIN2_DRIVER
GPIO_PIN2_SOURCE
GPIO_PIN3_WAKEUP_ENABLE
GPIO_PIN3_INT_TYPE
GPIO_PIN3_DRIVER
GPIO_PIN3_SOURCE
GPIO_PIN4_WAKEUP_ENABLE
GPIO_PIN4_INT_TYPE
GPIO_PIN4_DRIVER
GPIO_PIN4_SOURCE
GPIO_PIN5_WAKEUP_ENABLE
GPIO_PIN5_INT_TYPE
GPIO_PIN5_DRIVER
GPIO_PIN5_SOURCE
GPIO_PIN6_WAKEUP_ENABLE
GPIO_PING_INT_TYPE
GPIO_PIN6_DRIVER
GPIO_PIN6_SOURCE
GPIO_PIN7_WAKEUP_ENABLE
GPIO_PIN7_INT_TYPE
GPIO_PIN7_DRIVER
GPIO_PIN7_SOURCE
GPIO_PIN8_WAKEUP_ENABLE
GPIO_PIN8_INT_TYPE
GPIO_PIN8_DRIVER
GPIO_PIN8_SOURCE
GPIO_PIN9_WAKEUP_ENABLE
GPIO_PIN9_INT_TYPE
GPIO_PIN9_DRIVER
GPIO_PIN9_SOURCE
GPIO_PIN10_WAKEUP_ENABLE
GPIO_PIN10_INT_TYPE
GPIO_PIN10_DRIVER
GPIO_PIN10_SOURCE
GPIO_PIN11_WAKEUP_ENABLE
GPIO_PIN11_INT_TYPE
GPIO_PIN11_DRIVER
GPIO_PIN11_SOURCE
GPIO_PIN12_WAKEUP_ENABLE
GPIO_PIN12_INT_TYPE
GPIO_PIN12_DRIVER
GPIO_PIN12_SOURGE
GPIO_PIN13_WAKEUP_ENABLE
GPIO_PIN13_INT_TYPE
GPIO_PIN13_DRIVER
GPIO_PIN13_SOURCE
GPIO_PIN14_WAKEUP_ENABLE
GPIO_PIN14_INT_TYPE
GPIO_PIN14_DRIVER
GPIO_PIN14_SOURCE
GPIO_PIN15_WAKEUP_ENABLE
GPIO_PIN15_INT_TYPE
GPIO_PIN15_DRIVER
GPIO_PIN15_SOURCE
SIGMA_DELTA_ENABLE
SIGMA_DELTA_PRESCALAR
SIGMA_DELTA_TARGET
RTC_CALIB_START
RTC_PERIOD_NUM

RTC_CALIB_RDY
RTC_CALIB_RDY_REAL

RTC_CALIB_VALUE

BitPos
[31:16]
[15:0]
[31:16]
[15:0]
[31:16]
[15:0]
[31:22)
[21:16]
[15:0]
(31:16]
[15:0]
3

[30]
[29:20]
[19:0]

Description

BT-Coexist Selection register
‘The output value when the GPIO pin is set as output.

Writing 1 into a bit in this register will set the related bit in GPIO_OUT_DATA
Writing 1 into a bit in this register will clear the related bit in GPIO_OUT_DATA

SDIO-dis selection register
The output enable register.

Writing 1 into a bit in this register will set the related bit in GPIO_ENABLE_DATA
Writing 1 into a bit in this register will clear the related bit in GPIO_ENABLE_DATA

The values of the strapping pins.
The values of the GPIO pins when the GPIO pin is set as input.

Interrupt enable register.

Writing 1 into a bit in this register will set the related bit in GPIO_STATUS_INTERRUPT
Writing 1 into a bit in this register will clear the related bit in GPIO_STATUS_INTERRUPT
0: disable; 1: enable GPIO wakeup GPU, only when GPIO_PINO_INT_TYPE is 0x4 or 0x5
0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

1: open drain; 0: normal

1: sigma-delta; 0: GPIO_DATA

0: disable; 1: enable GPIO wakeup GPU, only when GPIO_PINO_INT_TYPE is 0x4 or 0x5
0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

1: open drain; 0: normal

1: sigma-delta; 0: GPIO_DATA

0: disable; 1: enable GPIO wakeup GPU, only when GPIO_PINO_INT_TYPE is 0x4 or 0x5
0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

1: open drain; 0: normal

1: sigma-delta; 0: GPIO_DATA

0: disable; 1: enable GPIO wakeup CPU, only when GPIO_PINO_INT_TYPE is 0x4 or 0x5
0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

1: open drain; 0: normal

1: sigma-delta; 0: GPIO_DATA

0: disable; 1: enable GPIO wakeup CPU, only when GPIO_PINO_INT_TYPE is 0x4 or 0x5
0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

1: open drain; 0: normal

1: sigma-delta; 0: GPIO_DATA

0: disable; 1: enable GPIO wakeup GPU, only when GPIO_PINO_INT_TYPE is 0x4 or 0x5
0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

1: open drain; 0: normal

1: sigma-delta; 0: GPIO_DATA

0: disable; 1: enable GPIO wakeup CPU, only when GPIO_PINO_INT_TYPE is 0x4 or 0x5
0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

1: open drain; 0: normal

1: sigma-deita; 0: GPIO_DATA

0: disable; 1: enable GPIO wakeup CPU, only when GPIO_PINO_INT_TYPE is 0x4 or 0x5
0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

1: open drain; 0: normal

1: sigma-delta; 0: GPIO_DATA

0: disable;
0: disable;
level

enable GPIO wakeup CPU, only when GPIO_PINO_INT_TYPE is x4 or 0x5
positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-

1: open drain; 0: normal
1: sigma-delta; 0: GPIO_DATA
0: disable; 1: enable GPIO wakeup GPU, only when GPIO_PINO_INT_TYPE is x4 or 0x5

0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

1: open drain; 0: normal
1: sigma-delta; 0: GPIO_DATA

0: disable; 1: enable GPIO wakeup GPU, only when GPIO_PINO_INT_TYPE is 0x4 or 0x5
0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

1: open drain; 0: normal
1: sigma-delta; 0: GPIO_DATA

0: disable; 1: enable GPIO wakeup CPU, only when GPIO_PINO_INT_TYPE is 0x4 or 0x5
0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

1: open drain; 0: normal
1: sigma-delta; 0: GPIO_DATA

0: disable; 1: enable GPIO wakeup CPU, only when GPIO_PINO_INT_TYPE is 0x4 or 0x5
0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

1: open drain; 0: normal

1: sigma-delta; 0: GPIO_DATA

0: disable; 1: enable GPIO wakeup GPU, only when GPIO_PINO_INT_TYPE is x4 or 0x5
0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

1: open drain; 0: normal

1: sigma-delta; 0: GPIO_DATA

0: disable; 1: enable GPIO wakeup GPU, only when GPIO_PINO_INT_TYPE is x4 or 0x5
0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

1: open drain; 0: normal

1: sigma-delta; 0: GPIO_DATA

0: disable; 1: enable GPIO wakeup GPU, only when GPIO_PINO_INT_TYPE is x4 or 0x5
0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

1: open drain; 0: normal

1: sigma-delta; 0: GPIO_DATA

1: enable sigma-detta; 0: disable

Clock pre-divider for sigma-delta.

target level of the sigma-delta. It is a signed byte.

Positvie edge of this bit will trigger the RTG-clock-calibration process.

The cycle number of RTC-clock during RTG-clock-calibration

0: during RTC-clock-calibration; 1: RTG-clock-calibration is done

0: during RTC-clock-calibration; 1: RTC-clock-calibration is done

The cycle number of clk_xtal (crystal clock) for the RTC_PERIOD_NUM cycles of RTC-
clock

Appendix 2 — SPI Registers

Address RegName Signal BitPos Default SW(R/W) Description
0x0 SPI_CMD spi_usr [18] 1'b0 R/W In the master mode, it is the start bit of a single operation. Self-clear by hardware
Ox4 SPI_ADDR iodata_start_addr [31:0] 32'h0 R/W In the master mode, it is the value of address in "address" phase.
0x8 SPI_CTRL [31:27] 5'hO RO
spi_wr_bit_order [26] 1'00 R/W In "command", "address", "write-data" (MOSI) phases, 1: LSB first; 0: MSB first
spi_rd_bit_order [25] 1'b0 R/W In "read-data" (MISO) phase, 1: LSB first; 0: MSB first
spi_gio_mode [24] 1'00 R/W In the read operations, "address" phase and "read-data" phase apply 4 signals
spi_dio_mode [23] 1'b0 R/W In the read operations, "address" phase and "read-data" phase apply 2 signals
spi_gout_mode [20] 1'00 R/W In the read operations, "read-data" phase apply 4 signals
spi_dout_mode [14] 1'00 R/W In the read operations, "read-data" phase apply 2 signals
spi_fastrd_mode [13] 1'b1 R/W this bit enable the bits: spi_gio_mode, spi_dio_mode, spi_gout_mode and spi_dout_mode
0x10 SPI_RD_STATUS slv_rd_status [31:0] 32'h00 R/W In the slave mode, this register are the status register for the master to read out.
Ox14 SPI_CTRL2 spi_cs_delay_num [31:28] 4'h0 R/W spi_cs signal is delayed by 80MHz clock cycles
spi_cs_delay_mode [27:26] 2'hO R/W spi_cs signal is delayed by spi_clk. O: zero; 1: half cycle; 2: one cycle
spi_mosi_delay_num [25:23] 3'hO R/W MOSI signals are delayed by 80MHz clock cycles
spi_mosi_delay_mode [22:21] 2'hO R/W MOSI signals are delayed by spi_clk. O: zero; 1: half cycle; 2: one cycle
spi_miso_delay_num [20:18] 3'hO R/W MISO signals are delayed by 80MHz clock cycles
spi_miso_delay_mode [17:16] 2'h0 R/W MISO signals are delayed by spi_clk. O: zero; 1: half cycle; 2: one cycle
0x18 SPI_CLOCK spi_clk_equ_sysclk [31] 1'b1 R/W In the master mode, 1: spi_clk is eqaul to 80MHz, 0: spi_clk is divided from 80 MHz clock.
spi_clkdiv_pre [30:18] 13'b0 R/W In the master mode, it is pre-divider of spi_clk.
spi_ckent N [7:12] 6h3 RW In the master mode, it is the divider of spi_clk. So spi_clk frequency is 80MHz/(spi_clkdiv_pre+1)/
(spi_clkent_N+1)
spi_clkent_H [11:6] 6'h1 R/W In the master mode, it must be floor((spi_clkcnt_N+1)/2-1). In the slave mode, it must be 0.
spi_clkent_L [5:0] 6'h3 R/W In the master mode, it must be egaul to spi_clkent_N. In the slave mode, it must be 0.
0x1C SPI_USER spi_usr_command [31] 1'b1 R/W This bit enable the "command" phase of an operation.
spi_usr_addr [30] 1'00 R/W This bit enable the "address" phase of an operation.
spi_usr_dummy [29 1'b0 R/W This bit enable the "dummy" phase of an operation.

]
Spi_usr_miso [28] 1'00 R/W This bit enable the "read-data" phase of an operation.
Spi_usr_mosi [27] 1'00 R/W This bit enable the "write-data" phase of an operation.
reg_usr_mosi_highpart [25] 1'00 R/W 1: "write-data" phase only access to high-part of the buffer spi_w8~spi_w15
reg_usr_miso_highpart [24] 1'00 R/W 1: "read-data" phase only access to high-part of the buffer spi_w8~spi_w15

spi_sio [16] 1'00 R/W 1: mosi and miso signals share the same pin
spi_fwrite_gio [15] 1'00 R/W In the write operations, "address" phase and "read-data" phase apply 4 signals
spi_fwrite_dio [14] 1'b0 R/W In the write operations, "address" phase and "read-data" phase apply 2 signals
spi_fwrite_quad [13] 1'b0 R/W In the write operations, "read-data" phase apply 4 signals
spi_fwrite_dual [12] 1'b0 R/W In the write operations, "read-data" phase apply 2 signals
spi_wr_byte_order [11] 1'b0 R/W In "command", "address", "write-data" (MOSI) phases, 1: little-endian; O: big_endian
spi_rd_byte_order [10] 1'b0 R/W In "read-data" (MISO) phase, 1: little-endian; 0: big_endian
spi_ck_i_edge [6] 1'b1 R/W In the slave mode, 1: rising-edge; O: faling-edge

0x20 SPI_USER1 reg_usr_addr_bitlen [31:26] 6'd23 R/W The length in bits of "address" phase. The register value shall be (bit_num-1)
reg_usr_mosi_bitlen [25:17] 9'hO R/W The length in bits of "write-data" phase. The register value shall be (bit_num-1)
reg_usr_miso_bitlen [16:8] 9'h0 R/W The length in bits of "read-data" phase. The register value shall be (bit_num-1)
reg_usr_dummy_cyclelen [7:0] 8'h0 R/W The length in spi_clk cycles of "dummy" phase. The register value shall be (cycle_num-1)

0x24 SPI_USER2 reg_usr_command_bitlen [31:28] 4'd7 R/W The length in bits of "command" phase. The register value shall be (bit_num-1)
reg_usr_command_value [15:0] 16'b0 R/W The value of "command" phase

0x28 SPI_WR_STATUS slv_wr_status [31:0] 32'b0 RW In the slave mode, this register are the status register for the master to write into.

0x2C SPI_PIN spi_cs2_dis [2] 1'b1 R/W 1: disable CS2; O: spi_cs signal is from/to CS2 pin
spi_cs1_dis [1] 1'b1 R/W 1: disable CS1; O: spi_cs signal is from/to CS1 pin
spi_csO_dis [0] 1'00 R/W 1: disable CS0; 0: spi_cs signal is from/to CSO pin

0x30 SPI_SLAVE spi_sync_reset [31] 1'00 R/W It is the synchronous reset signal of the module. This bit is self-cleared by hardware.
spi_slave_mode [30] 1'00 R/W 1: slave mode, 0: master mode.

N . 1: slave mode commands are defined in SPI_SLAVES. 0: slave mode commands are fixed as 1: "write-

slv_omd_define [27] 1'00 RW status"; 4: "read-status"; 2: "write-buffer" and 3: "read-buffer".
spi_trans_cnt [26:23] 4'b0 RO The operations counter in both the master mode and the slave mode.
spi_int_en [9:5] gObLOO R/W Interrupt enable bits for the below 5 sources
spi_trans_done [4] 1'b0 R/W The interrupt raw bit for the completement of any operation in both the master mode and the slave mode.
slv_wr_sta_done [3] 1'b0 R/W The interrupt raw bit for the completement of "write-status" operation in the slave mode.
slv_rd_sta_done [2] 1'b0 R/W The interrupt raw bit for the completement of "read-status" operation in the slave mode.
slv_wr_buf_done 1] 1'b0 R/W The interrupt raw bit for the completement of "write-buffer" operation in the slave mode.
slv_rd_buf_done [0] 1'00 R/W The interrupt raw bit for the completement of "read-buffer" operation in the slave mode.

In the slave mode, it is the length in bits for "write-status" and "read-status" operations. The register value

0x34 SPI_SLAVE1 slv_status_bitlen [31:27] 5'b0O R/W N

shall be (bit_num-1)

olv_buf_bitlen [24:16] 900 RW In thg slave mode, it is the length in bits for "write-buffer" and "read-buffer" operations. The register value shall
be (bit_num-1)

slv_rd_addr_bitlen [15:10] 60 RW I(g;hius’:qa:e) mode, it is the address length in bits for "read-buffer" operation. The register value shall be

slv_wr_addr_bitlen [9:4] 600 RW I(B‘Ihﬁus'fie) mode, it is the address length in bits for "write-buffer" operation. The register value shall be

slv_wrsta_dummy_en [3] 1'00 R/W In the slave mode, it is the enable bit of "dummy" phase for "write-status" operations.

slv_rdsta_dummy_en [2] 1'00 R/W In the slave mode, it is the enable bit of "dummy" phase for "read-status" operations.

slv_wrbuf_dummy_en [1] 1'00 R/W In the slave mode, it is the enable bit of "dummy" phase for "write-buffer" operations.

slv_rdbuf_dummy_en [0] 1'b0 R/W In the slave mode, it is the enable bit of "dummy" phase for "read-buffer" operations.

slv_wrbuf_dummy_cyclele In the slave mode, it is the length in spi_clk cycles "dummy" phase for "write-buffer" operations. The register

0x38 SPI_SLAVE2 [31:24] 8'bO R/W
n value shall be (cycle_num-1)
slv_rdbuf_dummy_cyclelen [23:16] 8'b0 RAW In the slave mode, it is the length in spi_clk cycles of "dummy" phase for "read-buffer" operations. The register
value shall be (cycle_num-1)
slv_wrsta_dummy_cyclele . . In the slave mode, it is the length in spi_clk cycles of "dummy" phase for "write-status" operations. The
[15:8] 8'b0 R/W ’
n register value shall be (cycle_num-1)
slv_rdsta_dummy_cyclelen [7:0] 8'b0 RAW In the slave mode, it is the length in spi_clk cycles of "dummy" phase for "read-status" operations. The
register value shall be (cycle_num-1)
0x3C SPI_SLAVE3 slv_wrsta_cmd_value [31:24] 8'b0 R/W In slave mode, it is the value of "write-status" command
slv_rdsta_cmd_value [23:16] 8'b0 R/W In slave mode, it is the value of "read-status" command
slv_wrbuf_cmd_value [15:8] 8'b0 R/W In slave mode, it is the value of "write-buffer" command
slv_rdbuf_cmd_value [7:0] 8'b0 R/W In slave mode, it is the value of "read-buffer" command
OX40~0x7C SPLWO~SPI_W15 spi_wO~spi_w15 [31:0] 390 RW ;Ilzg§§162uﬁer inside SPI module. There are 64byte, i.e., 16 words. Note that only 32bit accessing are

OxFC SPI_EXT3 reg_int_hold_ena [1:0 2'b0 R/W This register is for two SPI masters to share the same cs, clock and data signals.

Appendix 3 — UART Registers

Address RegName Signal BitPos Default SW(R/W) Description

0x0 UART_FIFO [31:8] 24'h0 RO UART FIFO,length 128
rxfifo_rd_byte [7:0] 8'b0 RO R/W share the same address

Ox4 UART_INT_RAW UART_INT_RAW UART INTERRUPT RAW STATE

The interrupt raw bit for Rx time-out interrupt(depands on the

rxfifo_tout_int_raw 8] 1'b0 RO UART_RX_TOUT_THRHD)
brk_det_int_raw 71 1'b0 RO The interrupt raw bit for Rx byte start error
cts_chg_int_raw 6] 1'b0 RO The interrupt raw bit for CTS changing level
dsr_chg_int_raw 5] 1'b0 RO The interrupt raw bit for DSR changing level
rxfifo_ovf_int_raw 4] 1'b0 RO The interrupt raw bit for rx fifo overflow
frm_err_int_raw 3] 1'b0 RO The interrupt raw bit for other rx error
parity_err_int_raw 2] 1'pb0 RO The interrupt raw bit for parity check error
bdfoomptyinraw 1) Tbo RO ["elmemumtiawbitiort ffo empl interupi(depands on
oty 0t Ao el bhio et empidencs o
UART INTERRUPT STATE
0x8 UART_INT_ST UART_INT_ST REGISTER (UART_INT_RAWSUART_INT_ENA)
rxfifo_tout_int_st 8] 1'b0 RO The interrupt state bit for Rx time-out event
brk_det_int_st 71 1'b0 RO The interrupt state bit for rx byte start error
cts_chg_int_st 6] 1'b0 RO The interrupt state bit for CTS changing level
dsr_chg_int_st 5] 1'b0 RO The interrupt state bit for DSR changing level
rxfifo_ovf_int_st 4] 1'b0 RO The interrupt state bit for RX fifo overflow
frm_err_int_st 3] 1'b0 RO The interrupt state for other rx error
parity_err_int_st 2] 1'p0 RO The interrupt state bit for rx parity error
txfifo_empty_int_st] 1'b0 RO The interrupt state bit for TX fifo empty
rxfifo_full_int_st 0] 1'b0 RO The interrupt state bit for RX fifo full event
0xC UART_INT_ENA UART_INT_ENA UART INTERRUPT ENABLE REGISTER
rxfifo_tout_int_ena (8] 1'b0 R/W The interrupt enable bit for rx time-out interrupt
brk_det_int_ena 7 1'b0 R/W The interrupt enabile bit for rx byte start error
cts_chg_int_ena 6] 1'b0 R/W The interrupt enable bit for CTS changing level
dsr_chg_int_ena (5] 1'b0 R/W The interrupt enable bit for DSR changing level
rxfifo_ovf_int_ena 4] 1'b0 R/W The interrupt enable bit for rx fifo overflow
frm_err_int_ena 3] 1'b0 R/W The interrupt enable bit for other rx error
parity_err_int_ena 2] 1'b0 R/W The interrupt enable bit for parity error
txfifo_empty_int_ena [1] 1'b0 R/W The interrupt enable bit for tx fifo empty event
rxfifo_full_int_ena 0] 1'b0 RW The interrupt enable bit for rx fifo full event
0x10 UART_INT_CLR UART_INT_CLR UART INTERRUPT CLEAR REGISTER
rxfifo_tout_int_clr 8] 1'b0 WO Set this bit to clear the rx time-out interrupt
brk_det_int_clr 71 1'b0 WO Set this bit to clear the rx byte start interrupt
cts_chg_int_clr 6] 1'b0 WO Set this bit to clear the CTS changing interrupt
dsr_chg_int_clr 5] 1'b0 WO Set this bit to clear the DSR changing interrupt
rxfifo_ovf_int_clr 4] 1'b0 WO Set this bit to clear the rx fifo over-flow interrupt
frm_err_int_clr 3] 1'b0 WO Set this bit to clear other rx error interrupt
parity_err_int_clr 2] 1'b0 WO Set this bit to clear the parity error interrupt
txfifo_empty_int_clr] 1'b0 WO Set this bit to clear the tx fifo empty interrupt
rxfifo_full_int_clr 0] 1'b0 WO Set this bit to clear the rx fifo full interrupt
0x14 UART_CLKDIV UART_CLKDIV UART CLK DIV REGISTER
uart_clkdiv [19:0] 20'h2B6 R/W BAUDRATE = UART_CLK_FREQ / UART_CLKDIV
0x18 UART_AUTOBAUD UART_AUTOBAUD UART BAUDRATE DETECT REGISTER
glitch_filt [15:8] 8'h10 R/W
[7:1] 7'h0 RO
autobaud_en 0] 1'b0 R/W Set this bit to enable baudrate detect
UART_ST = UART_STATUS UART_STATUS UART STATUS REGISTER
ATUS
txd 31] 8'h0 RO The level of the uart txd pin
rtsn [30] 1'b0 RO The level of uart rts pin
dtrn 29] 1'b0 RO The level of uart dtr pin
[28:14] 5'b0 RO
xfifo_cnt [23:16] 8'b0 RO Number of data in UART TX fifo
rxd [15] 1'b0 RO The level of uart rxd pin
ctsn [14] 1'b0 RO The level of uart cts pin
dsrn [13] 1'b0 RO The level of uart dsr pin
[12:8] 5'b0 RO
rxfifo_cnt [7:0] 8'b0 RO Number of data in uart rx fifo
0x20 UART_CONFO UART_CONFO UART CONFIGO(UARTO and UARTT)
uart_dtr_inv [24] 1'h0 RW Set this bit to inverse uart dtr level
uart_rts_inv 23] 1'h0 R/W Set this bit to inverse uart rts level
uart_txd_inv 22] 1'h0 R/W Set this bit to inverse uart txd level
uart_dsr_inv [21] 1'h0 R/W Set this bit to inverse uart dsr level
uart_cts_inv [20] 1'h0 R/W Set this bit to inverse uart cts level
uart_rxd_inv [19] 1'h0 R/W Set this bit to inverse uart rxd level
txfifo_rst (18] 1'h0 R/W Set this bit to reset uart tx fifo
rxfifo_rst 7] 1'h0 R/W Set this bit to reset uart rx fifo
tx_flow_en 18] 1'b0 R/W Set this bit to enable uart tx hardware flow control
uart_loopback [14] 1'b0 R/W Set this bit to enable uart loopback test mode
txd_brk (8] 1'b0 R/W RESERVED, DO NOT CHANGE THIS BIT
sw_dtr " 1'b0 R/W sw dtr
sw_rts 6] 1'b0 R/W swrts
stop_bit_num 5:4] 2'd1 RW Set stop bit: 1:1bit 2:1.5bits 3:2bits
bit_num [3:2] 2'd3 R/W Set bit num: 0:5bits 1:6bits 2:7bits 3:8bits
parity_en 1] 1'b0 R/W Set this bit to enable uart parity check
parity 0] 1'b0 R/W Set parity check: 0:even 1:0dd
UART_CONF1 UART CONFIG1
0x24 UART_CONF1 rx_tout_en [31] 1'b0 RW Set this bit to enable rx time-out function
rx_tout_thrhd [30:24] 7'00 RW Config bits for rx time-out threshold,uint: byte,0-127
rx_flow_en 23] 1'b0 R/W Set this bit to enable rx hardware flow control
rx_flow_thrhd [22:16] 7'h0 R/W The config bits for rx flow control threshold,0-127
[15) 1'00 RO
txfifo_empty_thrhd [14:8] 7'h60 R/W The config bits for tx fifo empty threshold,0-127
ul 1'00 RO
rxfifo_full_thrhd 6:0] 7'h60 RW The config bits for rx fifo full threshold,0-127
0x28 UART_LOWPULSE | UART_LOWPULSE
lowpulse_min_cnt [19:0] 20'hFFFF RO used in baudrate detect
F

0x2C UART_HIGHPULSE ~ UART_HIGHPULSE

highpulse_min_cnt [19:0] 20'hFFFF RO used in baudrate detect
F
0x30 UART_RXD_CNT
rxd_edge_cnt [9:0] 10'h0 RO used in baudrate detect
0x78 UART_DATE uart_date [31:0] 32'h0620 R/W UART HW INFO
00

0x7C UART_ID uart_id [31:0] 32'h0500 R/W

Appendix 4 — Timer Registers

Address RegName Signal BitPos Default SW(R/W) Description
0x0 FRC1_LOAD_ADDRESS frc1_load_value [22:0] 23'b0 R/W the load value into the counter
Ox4 FRC1_COUNT_ADDRESS frc1_count [22:0] 23'h7fffif RO LZigigem value of the counter. Itis a decreasing
0x8 FRC1_CTRL_ADDRESS [31:9] 23'00 RO
fro1_int 8] 160 RO the status of the interrupt, when the count is

dereased to zero
frc1_ctrl [7:0] 8'b0 R/W bit[7]: timer enable

bit[6]: automatically reload, when the counter is
equal to zero
bit[3:2]: prescale-divider, O: divided by 1, 1: divided
by 16, 2 or 3: divided by 256
bit[0]: interrupt type, 0:edge, 1:level

oxC FRC1_INT_ADDRESS [31:1 30'b0 RO

fre1_int_clr_mask [0] 160 RAW yvrite to clear t'he" statt:s of the interrupt, if the

interrupt type is "level
0x20 FRC2_LOAD_ADDRESS frc2_load_value [31:0] 32'b0 R/W the load value into the counter

0x24 FRC2_COUNT ADDRESS frc2_count [31:0] 3261 RO g:iﬁgem value of the counter. It is a increasing
0x28 FRC2_CTRL_ADDRESS [31:9] 23'b0 RO

the status of the interrupt, when the count is equal to
the alarm value

fre2_ctrl [7:0] 8'b0 R/W bit[7]: timer enable

bit[6]: automatically reload, when the counter is
equal to zero

bit[3:2]: prescale-divider, 0: divided by 1, 1: divided
by 16, 2 or 3: divided by 256

bit[0]: interrupt type, O:edge, 1:level

fre2_int 8 160 RO

0x2C FRC2_INT_ADDRESS [31:1] 30'b0 RO
fre2_int_clr_mask [0] 1'b0 RAW write to clear the status of the interrupt, if the

interrupt type is "level"
0x30 FRC2_ALARM_ADDRESS frc2_alarm [31:0] 32'00 R/W the alarm value for the counter

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without
notice.

THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS
FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT
OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of
information in this document is disclaimed. No licenses express or implied, by estoppel or
otherwise, to any intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is
a registered trademark of Bluetooth SIG.

E if loT T All trade names, trademarks and registered trademarks mentioned in this document are
spressitlol leam property of their respective owners, and are hereby acknowledged.

Wwww. espressif,com Copyright © 2017 Espressif Inc. All rights reserved.

